Ultrafast Spin Manipulation at THz frequencies

An ultrafast spin current triggers the emission of Terahertz-Radiation.

An ultrafast spin current triggers the emission of Terahertz-Radiation. © H. D. Wöhrle/Universität Göttingen

The demands for ever increasing speed of information storage and data processing have triggered an intense search for finding the ultimately fast ways to manipulate spins in a magnetic medium. In this context, the use of femtosecond light pulses – the fastest man-made event - with photon energies ranging from X-rays (as used for instance at the HZB femto-slicing facility) to THz spectral range proved to be an indispensable tool in ultrafast spin and magnetization dynamics studies.

In a paper in Nature Nanotechnology, HZB-scientist Ilie Radu and his colleagues from Fritz-Haber-Institut Berlin, Uppsala, Göttingen and Forschungzentrum Jülich demonstrate a simple but very powerful way of manipulating the spins at unprecedented speeds within the so far unexplored THz range (1THz=1012 Hz). They use a femtosecond laser pulse to photo-excite the spins from a magnetic material to a non-magnetic one that is chosen to either trap or release the electrons carrying the spins. By this method they are able to generate ultrashort spin currents with tailor-made shapes and durations, which are detected using an ‘ultrafast amperemeter’ (based on the Inverse Spin Hall Effect) that converts the spin flow into a terahertz electromagnetic pulse.

These findings will possibly allow us to develop and design novel material with tailor-made characteristics, which might boost the magnetic recording rates of the magnetic bits to unprecedented speeds at THz frequencies. 

I.R.

The work is published in:T. Kampfrath et al. „Terahertz spin current pulses controlled by magnetic heterostructures”, Nature Nanotechnology 2013, doi: http://dx.doi.org/10.1038/NNANO.2013.43.

You might also be interested in

  • HZB physicist appointed to Gangneung-Wonju National University, South Korea
    News
    25.01.2023
    HZB physicist appointed to Gangneung-Wonju National University, South Korea
    Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.
  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.
  • Recommended reading: Bunsen magazine with focus on molecular water research
    News
    13.01.2023
    Recommended reading: Bunsen magazine with focus on molecular water research
    Water not only has some well-known anomalies, but is still full of surprises. The first issue 2023 of the Bunsen Magazine is dedicated to molecular water research, from the ocean to processes in electrolysis. The issue presents contributions from researchers cooperating within the framework of a European research initiative in the "Centre for Molecular Water Science" (CMWS). A team at HZB presents results from the synchrotron spectroscopy of water. Modern X-ray sources can be used to study molecular and electronic processes in water in detail.