Snap shots of one of life's central processes

A German-US-collaboration explores photosynthesis with the help of light sources as SLAC or BESSY II by taking snapshots of catalytic reactions. Illustration: Greg Stewart, SLAC National Accelerator Laboratory

A German-US-collaboration explores photosynthesis with the help of light sources as SLAC or BESSY II by taking snapshots of catalytic reactions. Illustration: Greg Stewart, SLAC National Accelerator Laboratory

Human Frontier Science Program provides funding of 900,000 US Dollars in support of international collaboration on photosynthesis.

Photosynthetic water-oxidation is one of the central processes of life on Earth but remains incompletely understood. Now, a German-American team of scientists has set out to observe the intermediate stages of this complex catalytic reaction using ultrashort snap shots taken at light sources including BESSY II in Berlin and the Linac Coherent Light Source at Stanford. To support their efforts, the Human Frontier Science Program has now pledged funding of approximately 900,000 US Dollars for a total three-year period. The team includes HZB physicist Dr. Philippe Wernet, chemist Prof. Dr. Athina Zouni of Humboldt University of Berlin, Dr. Uwe Bergmann of the SLAC National Accelerator Laboratory and Dr. Junko Yano of the Lawrence Berkeley National Laboratory, who is in charge of the project.

In spite of the fact that all aerobic organisms consume oxygen, thankfully, we don't ever run out of it. Because as part of photosynthesis, green plants, algae, and cyanobacteria all assemble carbohydrates from CO2, water, and sunlight, and in the process once again give off oxygen. Here, splitting of oxygen from water, the central reaction in photosystem II, a membrane bound multi-subunit protein, only becomes possible through the presence of a catalyst, a complex molecule with an Mn4CaO5 core. A team of HZB researchers, their Berlin and US colleagues is exploring the reactions involving this natural catalyst. New insights would not just be fundamentally exciting but could potentially also contribute to the storage of solar energy in the form of solar fuels to help solve one of the major challenges in the transitioning energy economy.

At the same time, the team has recently come up with a new approach that goes far beyond conventional X-ray crystallography and spectroscopy at low temperatures. Because as long as the investigations are done at temperatures near absolute zero, they don't even come close to resembling real-life conditions. What is more, the X-rays also damage the catalyst molecules. The intense and ultrashort femtosecond X-ray pulses at the Linac Coherent Light Source, the SLAC National Accelerator Laboratory's free electron laser in Stanford, USA, are capable of collecting data at room temperature and, in the process, detecting signals before the sample is destroyed. "What we're doing here is taking sort of a snap shot of the reaction," explains Philippe Wernet.

The researchers want to study protein structure and reaction dynamics of the Mn4CaO5  cluster, specifically while additional light is being absorbed and water is oxidized to yield oxygen. "We're planning a series of time-resolved X-ray diffraction and spectroscopy experiments to examine the reaction at room temperature and in the process image all the various intermediate stages," explains Wernet. The scientists' hope is to glean highly specific insights into the reactions as they take place at the Mn4CaO5 cluster and identify the intermediate stages that are necessary for the photosynthetic oxidation of water.

Here, the four experts complement each other beautifully. Junko Yano of the Lawrence Berkeley National Laboratory and chemist Athina Zouni of Humboldt-University Berlin are renowned photosystem II protein spectroscopy and X-ray crystallography experts, respectively. Uwe Bergmann and his team at the Linac Coherent Light Source, USA, will be involved with the spectroscopy instrumentation for taking the snap shots using hard X-rays. HZB's own Philippe Wernet will be examining the time-resolved samples using soft X-rays at BESSY II. Lastly, the joint measurements at the Linac Coherent Light Source will be of central importance.

 

Human Frontier Science Program

 

 

arö

  • Copy link

You might also be interested in

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.