Discovery of how a key enzyme of the spliceosome exerts its controlling function

Structure of Brr2-protein belongs to a family of enzymes that are called “RNA helicases”.

Structure of Brr2-protein belongs to a family of enzymes that are called “RNA helicases”.

To sustain life, processes in biological cells have to be strictly controlled both in time and in space. By using the MX-Beamline of synchrotron radiation source BESSY II research workers at the Max Planck Institute for Biophysical Chemistry in Göttingen and the Free University of Berlin have elucidated a previously unknown mechanism that regulates one of the essential processes accompanying gene expression in higher organisms. In humans, errors in this control mechanism can lead to blindness. This discovery has been published in the renowned scientific journal Science (23th may 2013).

Traudy Wandersleben and Karine Santos from the research group of Markus Wahl in Berlin determined the atomic structure of the Brr2 protein in contact with the relevant regulatory portion of Prp8. “To do this we used X ray crystallography,” states Markus Wahl. “There are excellent facilities for this kind of research at the BESSY II synchrotrons at the Helmholtz Centre in Berlin, where the necessary specialised instrumentation is available”.

Please find here the complete press release published by Freie Universität Berlin.

Original paper

Mozaffari Jovin, S., Wandersleben, T., Santos, K.F., Will, C.L., Lührmann, R., Wahl, M.C. (2013) Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science, 23 Mai 2013. DOI: ...

Further publications on the subject

[1]    Santos, K. F., Mozaffari Jovin, S., Weber, G., Pena, V., Lührmann, R., Wahl, M. C. (2012) Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proc. Natl. Acad. Sci. USA 109, 17418-17423.

[2]    Mozaffari Jovin, S., Santos, K. F., Hsiao, H.-H., Will, C. L., Urlaub, H., Wahl, M. C., Lührmann, R. (2012) The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev. 26, 2422-2434.

Further information::
Homepage of MPI-group Göttingen

Homepage of FU-group Berlin


übernommen von FU

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 25 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Scrolls from Buddhist shrine virtually unrolled at BESSY II
    Science Highlight
    23.07.2025
    Scrolls from Buddhist shrine virtually unrolled at BESSY II
    The Mongolian collection of the Ethnological Museum of the National Museums in Berlin contains a unique Gungervaa shrine. Among the objects found inside were three tiny scrolls, wrapped in silk. Using 3D X-ray tomography, a team at HZB was able to create a digital copy of one of the scrolls. With a mathematical method the scroll could be virtually unrolled to reveal the scripture on the strip. This method is also used in battery research.