Masdar PV and Helmholtz-Zentrum Berlin partner to accelerate development of next generation thin film crystalline silicon PV technology

• HZB’s first milestone achieved by succeeding in depositing a thin, crystalline 10μm layer of silicon on glass utilizing laser-crystallization

MASDAR PV and HELMHOLTZ-ZENTRUM Berlin have strengthened their R&D partnership, focusing resources on development of next generation thin film Si technology. After successful cooperation in the development of Masdar PV´s first and second generation thin film silicon based solar cells, Masdar and HZB/PVcomB are now moving ahead to accelerate deployment of a new generation of thin film crystalline silicon based PV.

HZB has achieved the first milestone on this technology roadmap by succeeding in depositing a thin, crystalline 10μm layer of silicon on glass utilizing laser-crystallization. “Thin film crystalline silicon based PV can achieve high efficiency with low material cost”, explains Prof Bernd Rech. “Thus, it combines the advantages of incumbent, wafer-based crystalline silicon PV and thin film Si technology. Moreover, thin film crystalline silicon uses only abundantly available materials. We are confident to reach efficiencies comparable to wafer based crystalline silicon technology. On a long-term basis we are aiming for 20 % and beyond with thin film Si technology.”

Recent developments at HZB on crystalline thin film Si solar cells have triggered the interest of MASDAR PV to invest in related R&D. HZB researchers demonstrated a world record value for the open-circuit voltage of 582 mV for c-Si on glass. This break-through result, the excellent material properties of thin film crystalline silicon created by Liquid Phase Crystallization as well as promising processability of the material initiated the shift in R&D focus now announced by Masdar PV and HZB / PVcomB. “We expect that thin film crystalline silicon solar cells can achieve 14% efficiency cells in the short to mid-term”, says Prof. Rutger Schlatmann, leader of the technology transfer unit PVcomB at the HZB, “and we are confident that rapid technological progress is possible in this field”.

Masdar PV is aiming to transfer this technology into its existing production facilities and therefore deliver this new technology on modules up to full size (5.7m²).

“Investing in the R&D of this next generation technology of thin film silicon on glass to produce PV panels could enable us to better compete with existing crystalline PV producers who rely on economies of scale rather than significant technology improvements”, says Masdar PV’s MD Tushita Ranchan.

About Masdar PV GmbH
Masdar PV GmbH develops and produces innovative thin-film solar products and solutions. The company is a 100 % subsidiary of Masdar, Abu Dhabi’s multifaceted initiative for innovative renewable energy technologies, launched and owned by Mubadala Development Company.
The selection of module sizes that customers can choose from and the products’ advantageous cost-benefit ratio ensure that the high-tech modules from Masdar PV are ideally suited for ground-mounted installations and large-area rooftop systems. Transparent and colored modules allow architects to build futuristic, façade- and roof-integrated PV installations.

Please visit our website for additional information: www.masdarpv.com

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.
  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.