Watching catalysts at work – at the atomic scale

Fundamental processes: Charge donation/backdonation in the [Fe(CO)5] model catalyst in solution was studiedby resonant inelastic X-ray scattering. This method can be used to selectively probe the electronic structure at each atom in the iron-carbonyl bond.

Fundamental processes: Charge donation/backdonation in the [Fe(CO)5] model catalyst in solution was studiedby resonant inelastic X-ray scattering. This method can be used to selectively probe the electronic structure at each atom in the iron-carbonyl bond. © HZB/Edlira Suljoti

Innovative combination of methods at HZB leads to fundamental insights in catalyst research

Developing materials with novel catalytic properties is one of the most important tasks in energy research. It is especially important to understand the dynamic processes involved in catalysis at the atomic scale, such as the formation and breaking of chemical bonds as well as ligand exchange mechanism. Scientists of Helmholtz-Zentrum Berlin (HZB) and collaborators have now combined the spectroscopic method “RIXS” with so-called ab initio theory in order to describe these processes in detail for a model organometallic catalyst of great interest to catalysis research – the iron carbonyl complex. The team publishes its results today in the prestigious scientific journal “Angewandte Chemie International Edition”.

Iron carbonyl complexes are used in a large number of chemical reactions and industrial processes, such as light-induced water reduction or catalytic carbon monoxide removal from exhaust gases. Their catalytic activity is a result of rapid formation and subsequent breaking of chemical bonds between the metal centre and the carbonyl ligands. “It is essential for us to be able to determine the strength of orbital mixing at the chemical bond by directly probing the metal centres and the ligands,” says Prof. Dr. Emad Flear Aziz, head of the HZB junior research group ‘Structure and Dynamics of Functional Materials’. Until recently, has not been possible to apply these studies in homogeneous catalysis which take place in solution. The development of the new “LiXEdrom” experimental station, here at HZB, which is equipped with the micro-jet technique has enabled RIXS (resonant inelastic X-ray scattering) experiments on functional materials under in-situ conditions.

In collaboration with scientists from various universities, Aziz’s team has now successfully studied both the metal and the ligands under real conditions in which this particular catalysis takes place (in situ), using RIXS spectroscopy at HZB’s electron storage ring BESSY II. They discovered a very strong orbital mixing between the metal and its ligands, which led to a weakening and elongation of the chemical bond during RIXS excitation. The experimental results were supported by theoretical ab initio methods by the University of Rostock. “With this new method combination, we have gained fundamental insights into the electronic structure of iron carbonyl complexes under catalysis-relevant conditions,” Aziz reports. “Our approach can help provide a better understanding of reaction dynamics and metal-ligand-solvent interactions on very short time scales. This leads to better control of catalytic properties – and holds great potential for the production of novel catalytically active materials.”

The work was a collaboration with Prof. Dr. M. Bauer (Faculty of Chemistry, TU Kaiserslautern), Prof. Dr. J.-E. Rubensson (Dept. of Physics and Astronomy, Uppsala University) and Prof. Dr. O. Kühn (Institute of Physics, University of Rostock).

The paper (DOI: 10.1002/anie.201303310) was published at July, 23rd 2013 in „Angewandte Chemie – International Edition“ (http://onlinelibrary.wiley.com/doi/10.1002/anie.201303310/abstract).

HS

  • Copy link

You might also be interested in

  • Perovskites: Hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Perovskites: Hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.