Watching catalysts at work – at the atomic scale

Fundamental processes: Charge donation/backdonation in the [Fe(CO)5] model catalyst in solution was studiedby resonant inelastic X-ray scattering. This method can be used to selectively probe the electronic structure at each atom in the iron-carbonyl bond.

Fundamental processes: Charge donation/backdonation in the [Fe(CO)5] model catalyst in solution was studiedby resonant inelastic X-ray scattering. This method can be used to selectively probe the electronic structure at each atom in the iron-carbonyl bond. © HZB/Edlira Suljoti

Innovative combination of methods at HZB leads to fundamental insights in catalyst research

Developing materials with novel catalytic properties is one of the most important tasks in energy research. It is especially important to understand the dynamic processes involved in catalysis at the atomic scale, such as the formation and breaking of chemical bonds as well as ligand exchange mechanism. Scientists of Helmholtz-Zentrum Berlin (HZB) and collaborators have now combined the spectroscopic method “RIXS” with so-called ab initio theory in order to describe these processes in detail for a model organometallic catalyst of great interest to catalysis research – the iron carbonyl complex. The team publishes its results today in the prestigious scientific journal “Angewandte Chemie International Edition”.

Iron carbonyl complexes are used in a large number of chemical reactions and industrial processes, such as light-induced water reduction or catalytic carbon monoxide removal from exhaust gases. Their catalytic activity is a result of rapid formation and subsequent breaking of chemical bonds between the metal centre and the carbonyl ligands. “It is essential for us to be able to determine the strength of orbital mixing at the chemical bond by directly probing the metal centres and the ligands,” says Prof. Dr. Emad Flear Aziz, head of the HZB junior research group ‘Structure and Dynamics of Functional Materials’. Until recently, has not been possible to apply these studies in homogeneous catalysis which take place in solution. The development of the new “LiXEdrom” experimental station, here at HZB, which is equipped with the micro-jet technique has enabled RIXS (resonant inelastic X-ray scattering) experiments on functional materials under in-situ conditions.

In collaboration with scientists from various universities, Aziz’s team has now successfully studied both the metal and the ligands under real conditions in which this particular catalysis takes place (in situ), using RIXS spectroscopy at HZB’s electron storage ring BESSY II. They discovered a very strong orbital mixing between the metal and its ligands, which led to a weakening and elongation of the chemical bond during RIXS excitation. The experimental results were supported by theoretical ab initio methods by the University of Rostock. “With this new method combination, we have gained fundamental insights into the electronic structure of iron carbonyl complexes under catalysis-relevant conditions,” Aziz reports. “Our approach can help provide a better understanding of reaction dynamics and metal-ligand-solvent interactions on very short time scales. This leads to better control of catalytic properties – and holds great potential for the production of novel catalytically active materials.”

The work was a collaboration with Prof. Dr. M. Bauer (Faculty of Chemistry, TU Kaiserslautern), Prof. Dr. J.-E. Rubensson (Dept. of Physics and Astronomy, Uppsala University) and Prof. Dr. O. Kühn (Institute of Physics, University of Rostock).

The paper (DOI: 10.1002/anie.201303310) was published at July, 23rd 2013 in „Angewandte Chemie – International Edition“ (http://onlinelibrary.wiley.com/doi/10.1002/anie.201303310/abstract).

HS

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.