Die Bauarbeiten beginnen: BESSY II erhält Anbau für neuen Laborkomplex

Mit einem feierlichen Spatenstich beginnen am Montag, dem 5. August 2013 um 16:00 die Bauarbeiten für das neue Forschungslabor EMIL an BESSY II: Das „Energy Materials In-Situ Laboratory Berlin“, kurz EMIL, wird als hochmodernes  Präparations- und Analyselabor für die Solarenergie- und Katalyseforschung aufgebaut. Das Gemeinschaftsprojekt vom HZB und der Max-Planck-Gesellschaft soll eine einzigartige Infrastruktur bieten, um interdisziplinär und industriekompatibel neue Materialien und Technologien zu entwickeln, die die Energiewende ermöglichen. Dazu zählen neue Materialsysteme für Solarmodule und Speicherlösungen, für die neuartige Katalysatoren entwickelt werden müssen.

Mit einem feierlichen Spatenstich beginnen am Montag, dem 5. August 2013 um 16:00 die Bauarbeiten für das neue Forschungslabor EMIL an BESSY II: Das „Energy Materials In-Situ Laboratory Berlin“, kurz EMIL, wird als hochmodernes  Präparations- und Analyselabor für die Solarenergie- und Katalyseforschung aufgebaut. Das Gemeinschaftsprojekt vom HZB und der Max-Planck-Gesellschaft soll eine einzigartige Infrastruktur bieten, um interdisziplinär und industriekompatibel neue Materialien und Technologien zu entwickeln, die die Energiewende ermöglichen. Dazu zählen neue Materialsysteme für Solarmodule und Speicherlösungen, für die neuartige Katalysatoren entwickelt werden müssen.

Das Gebäude für EMIL wird direkt an BESSY II angebaut, dabei sind zwei Laborkomplexe mit unterschiedlicher wissenschaftlicher Ausrichtung geplant: Das „SISSY“ (Solar Energy Material In-situ Spectroscopy at the Synchrotron) richtet das HZB für die photovoltaische Materialforschung ein. Beim Aufbau des „CAT-Labors“ (Catalysis Research for Sustainable Energy Supply) ist das Fritz-Haber-Institut der Max-Planck-Gesellschaft federführend. Dort werden Wissenschaftler der Max-Planck-Gesellschaft (photo-)katalytische Prozesse erforschen. An EMIL können Wissenschaftlerinnen und Wissenschaftler erstmals neuartige Materialsysteme auch während der Präparation „in situ“ mit dem Synchrotronlicht von BESSY II untersuchen und die dabei ablaufenden Prozesse aufklären. Damit können Forscherinnen und Forscher an EMIL die nächste Generation solarenergie-wandelnder Bauteile entwickeln. Bis Ende 2014 soll das Gebäude fertig gestellt werden.

„Dass die Bauarbeiten nach nur sieben Monaten Vorbereitungszeit schon starten, ist ein echter Rekord und belegt das große Engagement der beteiligten Mitarbeiter“, sagt Prof. Anke-Rita Kaysser-Pyzalla, wissenschaftliche Geschäftsführerin des HZB. So hat der Projektkoordinator der Bauabteilung des HZB, Reiner Keilholz, mit großer Umsicht alle Hürden aus dem Weg geräumt und sowohl die notwendigen Genehmigungen eingeholt als auch die Architekten bei ihrer Planung eng begleitet.

Zum Spatenstich wird Anke Kaysser-Pyzalla eine kurze Begrüßungsrede halten. Danach berichten der Projektleiter Prof. Klaus Lips und der leitende Architekt Markus Hammes über den Stand des Projekts. Anschließend kann auf den Start der Bauarbeiten angestoßen werden.


Ort: BESSY II, Albert-Einstein-Straße 15, 12489 Berlin (vor BESSY II in Richtung Magnusstraße)
Zeit: Montag, 5. August 2013, 16:00

Mehr Informationen:
http://www.helmholtz-berlin.de/projects/emil/

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.