Domain walls as new information storage

A scanning electron micrograph of a w=500 nm wide and 30 nm thick permalloy ring with radius r=2 μm overlayed with a scanning transmission X-ray microscopy (STXM) image showing the in-plane magnetic contrast.

A scanning electron micrograph of a w=500 nm wide and 30 nm thick permalloy ring with radius r=2 μm overlayed with a scanning transmission X-ray microscopy (STXM) image showing the in-plane magnetic contrast. © André Bisig, Johannes Gutenberg Universität Mainz

Domain wall motion imaging: at high speeds, material defects no longer play a role

Physicists at the Johannes Gutenberg University Mainz have directly observed how magnetic domains behave within ultrasmall, curved nanowires. Their work involved using the MAXYMUS x-ray microscope of Max Planck Institute for Intelligent Systems  at Berlin-based electron storage ring BESSY II, which is operated by the HZB. In doing so, they succeeded at capturing these processes in the form of image sequences. In this way, they were able to not only experimentally confirm theoretically predicted effects but also to observe and understand  new properties that promise interesting potential applications in the area of information technology, including as information storage devices or as position sensors. Applications based on the principle of magnetic domain walls are already being used in sensor technology.

Ferromagnetic materials break up in domains, which are regions with uniform magnetization. At the boundary of two different domains a domain wall forms. These walls are mobile and this mobility can be exploited for applications. Prof. Dr. Mathias Kläui‘s work group at the Johannes Gutenberg University Mainz has studied these domain walls, which form inside tiny magnetic rings some 4 micrometers in diameter. These rings consist of permalloy, a type of ferromagnetic nickel-iron alloy that can be easily magnetized.

To this end, the Mainz physicists worked closely with the team of Prof. Dr. Gisela Schütz from MPI for  Intelligent Systems, Stuttgart and Prof. Dr. Stefan Eisebitt’s team of scientists, who is head of the joint functional nanomaterials research group of the HZB and the TU Berlin. Through measurements at synchrotron sources BESSY II at the HZB and the Advanced Light Source in Berkeley, USA, they were able to directly observe the movements of the domain walls via such specialized X-ray microscopes as MAXYMUS, operated by the department of Prof. Dr. Gisela Schütz, MPI for Intelligent Systems, Stuttgart.

The researchers managed to specifically move the domain walls inside the ring using pulsed, rotating magnetic fields. “The faster we rotate these domain walls, the easier controlling them becomes,” says Dr. André Bisig, member of the Kläui team and first author of the study. In the process, they also discovered a new effect: The domain walls’ speed oscillates during rotational movement as the domain walls’ internal magnetic structure changed periodically.

Yet another observation concerned the effects of irregularities within the nanowires on the domain wall motion. According to the results, the faster a domain wall is rotated, the lower is the impact of material defects on this motion. “These findings expand our basic understanding of magnetic domain structures’ dynamic behavior,” Stefan Eisebitt explains. “They also illustrate the importance of being able to directly ‘watch’ functional nanostructures ‘at work’ using cutting-edge X-ray microscopes in order to develop new applications from these basic insights.” And Markus Weigand, leading scientist at the MAXYMUS-Beamline explains: “Our scanning-x-ray-microscope at BESSY II is currently the most powerful instrument for directly time resolved images of magnetisation dynamics.  It can show such processes in extreme slow motion, ten billion times slower than in nature.”

Publication:
André Bisig et al.
Correlation between spin structure oscillations and domain wall velocities
Nature Communications, 27. August 2013
DOI: 10.1038/ncomms3328

arö / Uni Mainz

  • Copy link

You might also be interested in

  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties in phosphorus. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.