At an international conference in Berlin, researchers were discussing options for using X-rays to take time-resolved measurements

Scientists from all over the world discussed the challanges of messuring the dynamic processes in different materials with X-rays.

Scientists from all over the world discussed the challanges of messuring the dynamic processes in different materials with X-rays.

The participants.

The participants.

The Helmholtz Virtual Institute “Dynamic pathways in multidimensional landscapes” is striving for a holistic view of material properties

In the heart of Berlin, 85 scientists came together on the occasion of an international conference in order to network as part of the Helmholtz Virtual Institute “Dynamic pathways in multidimensional landscapes” and gain new impulses for future research. The focus was on examining ultrafast dynamics within a broad material spectrum from molecules to nanostructures to strongly correlated solids. The conference took place from September 16 through 20 at the German Physical Society’s Magnus House in Berlin.

Using X-ray methods, the scientists are striving for a holistic view of different systems' properties determined by interactions among internal degrees of freedom and their interactions with the environment. The invited presentations covered the whole spectrum – from experimental aspects all the way to theoretical models. In that sense, the meeting of these different experts on the occasion of this conference was decidedly unique – and one of the virtual institute's key objectives. As such, every researcher from every available free electron laser (FEL) in the field of X-rays was represented. Over the last several years, FELs have established themselves as the single most important tool in the X-ray based study of ultrafast dynamics of matter. The SLAC’s Prof. Jo Stöhr gave a passionate talk on the major differences between interactions with matter of synchrotron light and FEL X-rays, respectively.

Stöhr is also scheduled to give a “Distinguished Lecture” on December 9, 2013, at the Helmholtz Zentrum Berlin.

The scientific scope of the conference included sessions on specific material classes and experimental techniques with a focus on:
- quantum materials, magnetism, and correlated solids
- molecular dynamics in physical chemistry and catalysis
- interactions of X-ray photons with matter
- atomic structural analysis using coherent scattering, diffraction and imaging

Attendees considered the poster session, where 26 submissions from junior researchers were being exhibited, a particular success. The posters helped reinforce the virtual institute’s breadth of research topics and prompted discussions.

As part of the Helmholtz Virtual Institute “Dynamic pathways in multidimensional landscapes,” scientists from the HZB, DESY, and from two German universities are together doing research on complex materials in collaboration with both national and international partners.  Prof. Dr. Alexander Föhlisch is the spokeman of the virtual Helmholtz institute and leads the "Institute Methods and Instrumentation for Synchrotron Radiation Research" at HZB.

(sz)

  • Copy link

You might also be interested in

  • Technology Transfer Prize Ceremony 2025
    News
    07.10.2025
    Technology Transfer Prize Ceremony 2025
    This year’s Technology Transfer Prize Ceremony will take place on October 13 at 2 pm in the Lecture Hall, BESSY II Building, Adlershof.
  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.
  • Metallic nanocatalysts: what really happens during catalysis
    Science Highlight
    10.09.2025
    Metallic nanocatalysts: what really happens during catalysis
    Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.