Neue Materialien für die Photovoltaik: HZB startet erste eigene Graduiertenschule
Prof. Susan Schorr mit Teilnehmerinnen und Teilnehmern der Graduiertenschule MatSEC
Strukturiert durch die Promotion
Neue Graduiertenschule am HZB: Doktoranden erforschen Materialien für die Energieumwandlung
Am Helmholtz-Zentrum Berlin ist gestern mit einem Auftakt-Workshop der Startschuss für die Graduiertenschule „Materials for Solar Energy Conversion“ (kurz MatSEC) gefallen. MatSEC ist die erste eigene Graduiertenschule des HZB, in der sich Doktoranden des Zentrums ausbilden lassen können. Angesiedelt ist sie an der Dahlem Research School (DRS) der Freien Universität Berlin (FU Berlin). Insgesamt zehn Doktoranden können das Angebot von MatSEC parallel zu ihrer Promotion nutzen.
Die Graduiertenschule MatSEC konzentriert sich auf die Erforschung von Kesteriten, neuartigen Materialsystemen für die Photovoltaik. Sie gelten als aussichtsreiche Kandidaten für Absorberschichten in der Dünnschicht-photovoltaik und könnten auch als Photoelektroden zur Aufspaltung von Wasser durch Sonnenenergie eingesetzt werden. Ziel ist es, die Beziehung zwischen der inneren Struktur und den Eigenschaften dieser Verbindungshalbleiter umfassend zu verstehen. Mit dem Wissen könnten Forscher maßgeschneiderte Materialien für kostengünstigere und effizientere Solarzellen entwickeln.
Prof. Dr. Susan Schorr, HZB-Abteilungsleiterin für Kristallographie und Professorin an der FU Berlin, ist die Sprecherin der neuen Graduiertenschule. Als Partner sind Arbeitsgruppen der FU Berlin, der Technischen Universität Berlin, der Humboldt-Universität zu Berlin und der Brandenburgischen Technischen Universität Cottbus beteiligt. „Die Stärke der neuen Graduiertenschule MatSEC liegt genau in dieser interdisziplinären Forschungsstruktur“, sagt Susann Schorr.
Die Promovierenden besuchen an den beteiligten Universitäten thematisch relevante Vorlesungen. Ergänzt wird das Programm durch begleitende Workshops, Auslandsaufenthalte und Angebote der Dahlem Research School. „Wir freuen uns, dass wir in der Graduiertenschule sieben zusätzliche Stellen für Doktoranden zur Verfügung stellen können“, sagt Gabriele Lampert, Doktorandenkoordinatorin am HZB.
HS
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=13837;sprache=dehttp://
- Link kopieren
-
Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
-
Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
-
Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.