New cavities successfully installed
The new cavities during their installation. © C. Jung /HZB
A glimps at the water circuits. © C. Jung / HZB
At the heart of BESSY II are four cavities, hollow resonators, providing the energy that electrons in the storage ring re-absorb after they have released it as light packets. The old cavities were still from the 1970s and were employed at DESY in Hamburg, then at BESSY I, and finally at BESSY II beginning in 1998. “However, the limit of their operating life has been reached”, says Dr. Wolfgang Anders from the HZB Institute of SRF – Science and Technology. Anders, an expert in the field, was responsible for replacing two of the four old cavities with new units during the summer shutdown.
The new cavities have been developed as an EU Project under the supervision of HZB. They are constructed of copper, as before, but have a somewhat more complex shape that is optimised to effectively avoid exciting undesirable oscillations, known as “higher-order modes”. These higher modes are excited by high beam energies and can lead to instabilities.
“The new cavities are significantly more robust and can store up to 80 kilowatts – twice as much as the old cavities. As a result, the requirements for cooling have increased as well”, explains Anders, pointing out the multitude of coolant pipes around the new cavities.
The beam energy at BESSY II is presently still restricted because the vacuum in the new cavities is still improving slowly. “We will be normalising the vacuum conditions over Christmas so that we can operate BESSY II at full beam energy afterwards”, says Anders.
Both of the other old cavities will be replaced during the 2015 summer shutdown so that all the advantages of the new cavities can come into play.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=13841;sprache=en
- Copy link
-
Key technology for a future without fossil fuels
In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
-
Scrolls from Buddhist shrine virtually unrolled at BESSY II
The Mongolian collection of the Ethnological Museum of the National Museums in Berlin contains a unique Gungervaa shrine. Among the objects found inside were three tiny scrolls, wrapped in silk. Using 3D X-ray tomography, a team at HZB was able to create a digital copy of one of the scrolls. With a mathematical method the scroll could be virtually unrolled to reveal the scripture on the strip. This method is also used in battery research.
-
Helmholtz Doctoral Award for Hanna Trzesniowski
During her doctoral studies at the Helmholtz Centre Berlin, Hanna Trzesniowski conducted research on nickel-based electrocatalysts for water splitting. Her work contributes to a deeper understanding of alkaline water electrolysis and paves the way for the development of more efficient and stable catalysts. On 8 July 2025, she received the Helmholtz Doctoral Prize, which honours the best and most original doctoral theses in the Helmholtz Association.