Neue Kavitäten erfolgreich in Betrieb genommen

Die neuen Kavitäten vor dem Einbau.

Die neuen Kavitäten vor dem Einbau. © C. Jung /HZB

Hier ein Blick auf die Wasserhähne, die den Kühlwasserzufluss regeln.

Hier ein Blick auf die Wasserhähne, die den Kühlwasserzufluss regeln. © C. Jung / HZB

Ein Herzstück von BESSY II sind vier Kavitäten, Hohlraumresonatoren, die dafür sorgen, dass die Elektronen im Speicherring die Energie wieder aufnehmen, die sie als Lichtpakete abgegeben haben. Die alten Kavitäten stammen noch aus den 1970er Jahren, sie waren bei DESY in Hamburg eingesetzt, dann bei BESSY I und seit 1998 bei BESSY II. „Doch langsam ist ihre Lebensdauer erreicht“, sagt Dr. Wolfgang Anders aus dem HZB Institut SRF Wissenschaft und Technologie. Der Experte war dafür verantwortlich, während des Sommer-Shutdowns zwei der vier alten Kavitäten durch neue Komponenten auszutauschen.

Ein Herzstück von BESSY II sind vier Kavitäten, Hohlraumresonatoren, die dafür sorgen, dass die Elektronen im Speicherring die Energie wieder aufnehmen, die sie als Lichtpakete abgegeben haben. Die alten Kavitäten stammen noch aus den 1970er Jahren, sie waren bei DESY in Hamburg eingesetzt, dann bei BESSY I und seit 1998 bei BESSY II. „Doch langsam ist ihre Lebensdauer erreicht“, sagt Dr. Wolfgang Anders aus dem HZB Institut SRF Wissenschaft und Technologie. Der Experte war dafür verantwortlich, während des Sommer-Shutdowns zwei der vier alten Kavitäten durch neue Komponenten auszutauschen.

Die neuen Kavitäten sind als EU-Projekt unter der Federführung des HZB entwickelt worden: Sie bestehen nach wie vor aus Kupfer, haben eine etwas komplexere Form, optimiert um unerwünschte Schwingungen, die sogenannten „Higher Order Modes“, wirkungsvoll zu unterdrücken. Solche Schwingungsmoden werden durch hohe Strahlströme angeregt und können zu Instabilitäten führen. 

„Die neuen Kavitäten sind deutlich belastbarer, sie können Leistungen bis zu 80 Kilowatt aufnehmen, doppelt so viel wie die alten Kavitäten. Deshalb sind auch die Anforderungen an die Kühlung gestiegen“, erklärt Anders und verweist auf die Vielzahl von Kühlwasserleitungen rund um die neuen Kavitäten.

Derzeit ist der Strahlstrom bei BESSY noch reduziert, weil sich das Vakuum in den neuen Kavitäten nur langsam verbessert. „Über Weihnachten werden wir die Vakuumbedingungen normalisieren, so dass wir BESSY II danach mit vollem Strahlstrom fahren können“, sagt Anders. 

Beim Sommer-Shutdown 2015 werden auch die beiden anderen alten Kavitäten ersetzt, so dass dann alle Vorteile der neuen Kavitäten zum Tragen kommen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.