Producing high performance solar cells at lower cost

Dr. Sebastian Brückner graduates “summa cum laude” on solar cells made from III-V semiconductors

Solar cells made from III-V semiconductors achieve the highest efficiency of all solar cells. Researchers recently celebrated a new world record in which HZB was involved: They successfully developed a solar cell that reaches 44.7 percent efficiency. And this technology holds even greater potential if the production subprocesses for these high performance cells could be more precisely controlled. Sebastian Brückner of Helmholtz Zentrum Berlin found the solution to an important challenge while completing his doctorate. He was studying the atomic surface structure of silicon and germanium, which are candidate substrate materials for such solar cells. Brückner gave compelling arguments as to how silicon and germanium substrates must be optimally prepared in the process gas environment in order to avoid defects in the subsequent III-V layers. For his thesis, which he submitted to Prof. Dr. Recardo Manzke of the Physics Institute at Humboldt-Universität zu Berlin, he received the highest academic distinction – a summa cum laude.

The high efficiency of III-V semiconductor solar cells makes them the first choice of energy source for satellites in space and for concentrator photovoltaic systems (which concentrate light using lenses, for example). Industrially, germanium is the established substrate for manufacturing these cells. It would, however, be less expensive and easier to work with silicon instead of germanium, especially because there is a much broader knowledge base on handling the latter, more widely used wafer material. Sebastian Brückner’s work now shows how we could in principle change over to silicon.

Sebastian Brückner prepared the substrate of silicon and germanium by metal-organic chemical vapour deposition (MOCVD) and closely examined the behaviour at the surfaces and interfaces to the III-V semiconductor materials. To do so, he used various ultra-high-vacuum-based methods and a special in-situ spectroscopic method (in-situ reflection anisotropy spectroscopy) to compare the atomic surface structures of the two materials and prepare them in controlled fashion. The critical step here was to prepare double-layer stepped substrates to avoid anti-phase disorder. The junior researcher also managed to identify important process parameters (including temperature and pressure) for producing silicon and germanium substrates with exactly the desired atomic structure. This method for silicon substrates has now been patented at HZB.

These results could also be significant for solar fuel production, Sebastian Brückner concludes: “Solar water splitting systems require tandem configurations, where absorbers made of a silicon/III-V semiconductor combination would be especially effective. If silicon was the substrate used, such tandem cells could even be produced at low cost.”

Sebastian Brückner has been part of the workgroup of Prof. Thomas Hannappel at TU Ilmenau since June 2011, and is delegated to HZB in the scope of a cooperative project. Thomas Hannappel moved to Ilmenau in the summer of 2011, where he has put together a team of 16.

The title of Sebastian Brückner’s thesis is: “Atomic scale in situ control of Si(100) and Ge(100) surfaces in CVD ambient”. You can download the summary via the link on the right.

(sz)

  • Copy link

You might also be interested in

  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).