Understanding a new type of solar cell

<span>Scanning electron microscopy of a Perovskite-solar cell: on a glass substrate (glass and FTO) highly porous titanium dioxide is deposited, which is impregnated with perovskite. This film is covered by an organic hole transporting material (HTM) and gold contact. </span>

Scanning electron microscopy of a Perovskite-solar cell: on a glass substrate (glass and FTO) highly porous titanium dioxide is deposited, which is impregnated with perovskite. This film is covered by an organic hole transporting material (HTM) and gold contact. © EPFL

Perovskite based solar cells are a hot topic in energy research and Science Magazine has put it on the list of Breakthroughs in 2013. In only a few years their efficiency has increased from 3 % to more than 16 %. However, a detailed explanation of the mechanisms of operation within this photovoltaic system is still lacking.  Scientists from Ecole polytechnique fédérale in Lausanne (EPFL) and of HZB-Institute for Solar Fuels have now uncovered the mechanism by which these novel light-absorbing semiconductors transfer electrons along their surface. They examined perovskite based solar cells with different architectures with time resolved spectroscopy techniques. Their results, which are now published online in Nature photonics, open the way to the design of photovoltaic converters with improved efficiency.

The groups of Michael Gratzel and Jaques E. Moser at EPFL, working with the team of Roel van de Krol at HZB-Institute for Solar Fuels, have used time-resolved spectroscopy techniques to determine how charges move across perovskite surfaces.

The researchers worked on various cell architectures, using either semiconducting titanium dioxide or insulating aluminum trioxide films. Both porous films were impregnated with lead iodide perovskite (CH3NH3PbI3) and an organic “hole-transporting material”, which helps extracting positive charges following light absorption. The time-resolved techniques included ultrafast laser spectroscopy and microwave photoconductivity.

The results showed two main dynamics. First, that charge separation, the flow of electrical charges after sunlight reaches the perovskite light-absorber, takes place through electron transfer at both junctions with titanium dioxide and the hole-transporting material on a sub-picosecond timescale. “Secondly, we could measure by microwave photoconductivity that charge recombination was significantly slower for titanium oxide films rather than aluminum ones”, Dennis Friedrich from the van de Krol Team points out. Charge recombination is a detrimental process wasting the converted energy into heat and thus reducing the overall efficiency of the solar cell”.

The authors state that lead halide perovskites constitute unique semiconductor materials in solar cells, allowing ultrafast transfer of electrons and positive charges at two junctions simultaneously and transporting both types of charge carriers quite efficiently. In addition, their findings show a clear advantage of the architecture based on titanium dioxide films and hole-transporting materials.

More information:
Nature photonics 'Unraveling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells'
doi:10.1038/nphoton.2013.374

arö/EPFL

  • Copy link

You might also be interested in

  • HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    News
    19.06.2025
    HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) and the National University of "Kyiv-Mohyla Academy" (NaUKMA) have signed a Memorandum of Understanding (MoU). The MoU serves as the starting point for collaborative research, academic exchange, and capacity-building between the two institutions. Actions will be taken to establish the Joint Research and Policy Laboratory at NaUKMA in Kyiv. The aim of the future laboratory is to jointly develop research and policy analysis, focusing on the energy and climate dimensions of Ukraine’s EU integration.
  • Long Night of Science 2025
    News
    18.06.2025
    Long Night of Science 2025
    Welcome!

  • Michael Naguib is visiting HZB as a Humboldt Research Awardee
    News
    16.06.2025
    Michael Naguib is visiting HZB as a Humboldt Research Awardee
    Professor Michael Naguib, from Tulane University in the USA, is one of the discoverers of a new class of 2D materials: MXenes are characterised by a puff pastry-like structure and have many applications, such as in the production of green hydrogen or as storage media for electrical energy. During his Humboldt Research Award in 2025, Professor Naguib is working with Prof Volker Presser at the Leibniz Institute for New Materials in Saarbrücken and with Dr Tristan Petit at HZB.