Vom Nanostäbchenteppich zur Solarzellen-Dünnschicht in wenigen Sekunden

Der &Uuml;bergang von der Schicht aus dichtgepackten Nanorods (links oben) in eine polykristalline Halbleiter-D&uuml;nnschicht (rechts oben) l&auml;sst sich &uuml;ber in-situ R&ouml;ntgenbeugung am  in Echtzeit beobachten. Die Intensit&auml;ten der R&ouml;ntgensignale sind in der unteren Abbildung farblich kodiert. Eine genaue Analyse der Signale verriet, dass die Umwandlung der Nanorods in Kesterit-Kristallite nur 9 bis 18 Sekunden dauert.<br />

Der Übergang von der Schicht aus dichtgepackten Nanorods (links oben) in eine polykristalline Halbleiter-Dünnschicht (rechts oben) lässt sich über in-situ Röntgenbeugung am in Echtzeit beobachten. Die Intensitäten der Röntgensignale sind in der unteren Abbildung farblich kodiert. Eine genaue Analyse der Signale verriet, dass die Umwandlung der Nanorods in Kesterit-Kristallite nur 9 bis 18 Sekunden dauert.
© R. Mainz/A. Singh

Forscherteams aus dem HZB und der University of Limerick, Irland, haben einen neuen Weg gefunden, um polykristalline Kesterit-Dünnschichten bei niedrigerer Temperatur herzustellen: Sie erzeugten zunächst einen Teppich aus geordneten Nanostäbchen mit Wurtzitstruktur. Diese Stäbchen besitzen chemisch die gleiche Zusammensetzung wie Kesterit, nur ihre Kristallstruktur ist unterschiedlich, wandelt sich aber bei Erwärmung in eine stabile Kesterit-Struktur um. An der EDDI-Beamline von BESSY II konnten die Wissenschaftler diesen Prozess in Echtzeit beobachten: Binnen weniger Sekunden bildeten sich aus den Wurtzit-Stäbchen Kesterit-Kristallite. Entscheidend war dabei nicht die Höhe der Temperatur, sondern die Heizrate: Je rascher die Wurtzit-Stäbchen erhitzt wurden, desto größer wurden die Kristallite. So gelang es Kesterit-Schichten aus fast mikrometergroßen Kristalliten zu erzeugen, welche in Dünnschicht-Solarzellen zum Einsatz kommen könnten. Die Ergebnisse dieser Untersuchungen sind nun in der Zeitschrift "Nature Communications" erschienen.

Kornbildung beim Wachstum von Kesterit-Solarzellenschichten in Echtzeit beobachtet
Als Ausgangsmaterial für die Bildung der Kesterit-Schicht dient ein „Teppich aus Nanostäbchen“: Die Chemiker um Ajay Singh und Kevin Ryan an der Universität Limerick haben mit Hilfe lösungsbasierter chemischer Verfahren hochgeordnete Schichten aus Wurtzit-Nanostäbchen hergestellt, welche exakt die gleiche Zusammensetzung wie Cu2ZnSnS4-Kesterit  besitzen. HZB-Physiker um Roland Mainz und Thomas Unold konnten nun mit Hilfe von Echtzeit-Röntgenbeugung an der EDDI-Beamline am BESSY II beobachten, wie sich durch einen Phasenübergang aus der metastabilen Wurtzitphase in die stabile Kesteritphase die makroskopisch angeordneten Nanostäbchen in Kesterit-Dünnschichten mit nahezu mikrometer-großen Kristalliten umwandeln. „Das Besondere ist, dass die Bildung der gesamten Kesterit-Schicht sehr schnell abläuft und gleichzeitig ein schnelles Kornwachstum ausgelöst wird“, sagt Mainz. Und je schneller die Proben hochgeheizt werden, desto größer werden die Kristallite. Mainz sagt: „Bei einer niedrigen Heizrate beginnt die Umwandlung von Wurtzit in Kesterit schon bei einer tieferen Temperatur, bei der sich viele kleine Kristallite bilden - statt weniger großer.  Hierbei bilden sich auch vermehrt Defekte aus. Beim schnellen Heizen ist dafür keine Zeit, die Umwandlung findet erst bei einer höheren Temperatur statt, bei der sich direkt eine defektärmere Struktur ausbildet.“

Der Vergleich der Phasenumwandlung bei langsamer und bei schneller Heizrate zeigt, dass nicht nur das Kornwachstum durch die Phasenumwandlung ausgelöst wird, sondern andersherum auch das Kornwachstum die Phasenumwandlung beschleunigt. Die HZB-Physiker haben ein Modell entwickelt, das diese Beobachtung erklären kann, und anhand von Modellrechnung die Übereinstimmung mit den gemessenen Daten überprüft.

Neuer Syntheseweg für dünne Halbleiterschichten mit kontrollierter Morphologie
Die Arbeit zeigt einen neuen Weg, um dünne mikrokristalline Schichten aus Halbleiter-Nanostrukturen ohne aufwändige Vakuumtechnik herzustellen. Kesterit-Halbleiter gelten als vielversprechende Alternative für die Chalkopyrit-Solarzellen (Cu(In,Ga)Se2), die bereits Laborwirkungsgrade über 20% erreichen. Kesterite besitzen ähnliche physikalische Eigenschaften wie Chalkopyrit-Halbleiter, kommen jedoch ohne die vergleichsweise weniger verfügbaren Elemente Indium und Gallium aus. Das neue Verfahren könnte auch für die Herstellung von mikro- und nanostrukturierten photoelektrischen Bauelementen, sowie für Halbleiterschichten aus anderen Materialien interessant sein, meint Mainz. „Wir bleiben aber an den Kesteriten dran, denn die sind im Moment wirklich ein spannendes Thema.“

Die Ergebnisse wurden in Nature communications unter der doi:10.1038/ncomms4133 publiziert

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.