PECDEMO: sunlight to hydrogen

Roel van de Krol, head of the HZB Institute for Solar Fuels, coordinates the global research project PECDEMO.Photo: P.Dera/HZB

Roel van de Krol, head of the HZB Institute for Solar Fuels, coordinates the global research project PECDEMO.Photo: P.Dera/HZB

Within just three years, research partners of the EU project PECDEMO are planning on developing a practical system capable of converting over eight percent of solar energy into hydrogen. This could prove a real breakthrough in terms of practical applicability. Roel van de Krol, head of the HZB Institute for Solar Fuels, coordinates this global research project.


The official start date is set for April. The research partners will have but three years to realize their self-defined goal – a feat that is both ambitious and tangible. Together, they plan on coming up with a material system capable of converting eight percent of irradiated solar energy into hydrogen. In addition, this material system should be able to cover an area of 50 square centimeters while maintaining stability for more than a thousand hours.

“Obviously we’re taking a real chance by so explicitly defining such a specific goal,” says Prof. Dr. Roel van de Krol, the EU project’s coordinator. “But given the rapid progress we’ve made over the past five years, we’re confident we can do it. The larger area is meant to demonstrate that these types of systems don’t just work only in the lab but that they can also be upscaled to hold relevance for real-world applications.” For smaller areas, the partners are even planning on upping efficiency to ten percent.

For the PECDEMO project, van de Krol has successfully secured the talents of several renowned partners: PVcomB and DLR, Michael Graetzel’s team at the Ecole Polytechnique Fédérale de Lausanne, Switzerland, the Israel Institute of Technology in Haifa, Israel, as well as the University of Portugal. Partners from industry include EVONIK Industries and Solaronix SA. In all, PECDEMO has been granted funding totaling 1,83 million Euros for a three year period, of which the HZB will be receiving 440,000 Euros.

arö

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.