New tool for Joint Lab to investigate the chemistry of nature

Intensity distribution of XUV light in the slit plane.

Intensity distribution of XUV light in the slit plane. © HZB/FU

Schematic picture for the high harmonic generation (HHG) light source (upper part) with zooming into the region of interaction with the liquid-phase sample (lower part).

Schematic picture for the high harmonic generation (HHG) light source (upper part) with zooming into the region of interaction with the liquid-phase sample (lower part). © HZB/FU

The Aziz’ team at the Joint Laboratory between Freie Universität Berlin and HZB has built a laser-based tabletop setup which generates ultrashort XUV light pulses and achieves their monochromatization by implementing special reflection zone plates, developed and produced by the team of Alexei Erko.

doi:10.1364/OE.22.010747

arö


You might also be interested in

  • Clean cooking fuel with a great impact for southern Africa
    News
    19.04.2024
    Clean cooking fuel with a great impact for southern Africa
    Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.

  • Quantsol Summer School 2024 - Call for Application
    News
    17.04.2024
    Quantsol Summer School 2024 - Call for Application
    Registration for Quantsol is now open!

    The International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion (Quantsol) will be held in September 1-8, 2024 in Hirschegg, Kleinwalsertal, Austria. The school is organised by the Helmholtz-Zentrum Berlin and the Technical University of Ilmenau. Applications can be submitted through the school’s homepage until Friday 31st of May 2024, 23.59h CET.

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.