Proteine: Neue Materialklasse entdeckt

Anordnung der Concanavalin A –Proteinmoleküle in zwei verschiedenen Protein Crystalline Frameworks.

Anordnung der Concanavalin A –Proteinmoleküle in zwei verschiedenen Protein Crystalline Frameworks. © Fudan Universität/HZB

Deutsch-chinesisches Forscherteam führt zentrale Untersuchungen zu „Protein Crystalline Frameworks“ an BESSY II des HZB durch

Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) haben in Zusammenarbeit mit Forschern der chinesischen Fudan-Universität eine neue Materialklasse charakterisiert: so genannte Protein Crystalline Frameworks (PCFs).

In den PCFs sind Proteine über bestimmte Hilfssubstanzen derart fixiert, dass sie sich symmetrisch ausrichten und sehr stabile Kristalle bilden. Die Forscher von HZB und Fudan-Universität wollen jetzt die Anwendungsmöglichkeiten der PCFs als funktionale Materialien ausloten. Ihre Ergebnisse veröffentlichen sie heute im Fachjournal „Nature Communications“
(DOI: 10.1038/ncomms5634).

Jeder kennt das Phänomen vom Frühstücksei: Proteine sind empfindliche Moleküle. Unter bestimmten Umständen – etwa in kochendem Wasser – denaturieren sie, verlieren ihre natürliche Gestalt und werden fest. Zwar sind Forscher schon seit geraumer Zeit in der Lage, mit diesen Substanzen umzugehen und sie sogar so zu behandeln, dass sie Kristalle bilden. Dies gelingt aber nur unter enormem Aufwand, der sich nur für Forschungszwecke lohnt. Zudem sind auch die Protein-Kristalle sehr empfindlich.

Den Wissenschaftlern von der Fudan-Universität ist es nun erstmalig gelungen, diese Nachteile zu umgehen: Sie verknüpften das Protein Concanavalin A mit Hilfsmolekülen aus der Substanzklasse der Zucker sowie mit dem Farbstoff Rhodamin. Die so fixierten Concanavalin-Moleküle ordneten sich in dem Rahmen aus Hilfsstoffen symmetrisch an: Sie bildeten einen Kristall, in dem die Proteine stabil ineinander verschachtelt sind – ein Protein Crystalline Framework.

Die Entwicklung solch eines Molekülkonstrukts nützt nichts, wenn man nicht weiß, wie er sich bildet und wie sein Aufbau auf Ebene der Atome aussieht. Bei der Suche nach passenden Untersuchungsmöglichkeiten wandten sich die Forscher aus Shanghai an eine chinesische Wissenschaftlerin, die am HZB arbeitet. Sie wies ihre Kollegen auf die MX-Beamlines am Elektronenspeicherring BESSY II des HZB hin.

„Wir konnten am HZB mit unseren speziellen Kristallografie-Messplätzen optimale Voraussetzungen bieten, um die PCFs hochaufgelöst zu charakterisieren“, sagt Dr. Manfred Weiss, einer der leitenden Wissenschaftler des MX-Labors am HZB. Dabei wurde klar, dass man über die Hilfsmoleküle sogar steuern kann, wie stark sich die Protein-Netzwerke durchdringen. „Das gibt den PCFs eine enorme Flexibilität und Variabilität, die wir bei den nun anstehenden Forschungen zu möglichen Anwendungen stets im Auge haben werden“, so Manfred Weiss.

Originalpublikation:
Sakai, F. et al. Protein crystalline frameworks with controllable interpenetration directed by dual supramolecular interactions. Nat. Commun. 5:4634 doi: 10.1038/ncomms5634 (2014).

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Michael Naguib als Humboldt-Forschungspreisträger am HZB
    Nachricht
    16.06.2025
    Michael Naguib als Humboldt-Forschungspreisträger am HZB
    Professor Michael Naguib von der Tulane University in den USA ist einer der Entdecker einer neuen Klasse von 2D-Materialien: MXene zeichnen sich durch eine blätterteigartige Struktur aus und bieten viele Anwendungsmöglichkeiten, beispielsweise bei der Erzeugung von grünem Wasserstoff oder als Speichermedium für elektrische Energie. Mit dem Humboldt-Forschungspreis im Jahr 2025 verstärkt Michael Naguib seine Zusammenarbeit mit Prof. Volker Presser am Leibniz-Institut für Neue Materialien in Saarbrücken und mit Dr. Tristan Petit am HZB.
  • KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Nachricht
    04.06.2025
    KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Wie gut ist künstliche Intelligenz im Vergleich zu menschlichen Fachleuten? Ein Forschungsteam des HIPOLE Jena hat diese Frage im Bereich der Chemie untersucht: Mithilfe eines neu entwickelten Prüfverfahrens namens „ChemBench“ verglichen die Forschenden die Leistung moderner Sprachmodelle wie GPT-4 mit der von erfahrenen Chemikerinnen und Chemikern. 

  • Gemeinsames Data & AI Center für Berlin geplant
    Nachricht
    27.05.2025
    Gemeinsames Data & AI Center für Berlin geplant
    Datengestützte Forschung ist entscheidend, um gesellschaftliche Herausforderungen zu bewältigen – sei es in der Gesundheits-, Material- oder Klimaforschung. Mit einem bislang einmaligen Schulterschluss wollen der Exzellenzverbund, das Max Delbrück Center und das Helmholtz-Zentrum Berlin gemeinsam mit dem Zuse-Institut Berlin ein leistungsstarkes Data & AI Center in der Hauptstadt aufbauen.