Leading scientists on topological insulators met in Berlin

Outstanding researchers took part in the “New Trends in Topological Insulators 2014” - workshop.

Outstanding researchers took part in the “New Trends in Topological Insulators 2014” - workshop.

From July 7-10, 150 researchers met in Berlin to discuss recent findings in the field of topological insulators.

Topological insulators are a rather new form of quantum matter with an insulating bulk and a metallic surface created by topologically protected and spin polarized electronic states.

Outstanding researchers took part in the “New Trends in Topological Insulators 2014” - workshop, organized by Gustav Bihlmayer (Forschungszentrum Jülich) and Saskia Fischer (Humboldt University and Oliver Rader of HZB. 20 speakers had been invited for presentations, the 2012 Buckley Prize winners Shoucheng Zhang and Laurens W. Molenkamp (also Leibniz Prize 2014), Zhi-Xun Shen (Buckley prize 2011) and Yoichi Ando (2014 Inoue Prize for Science) being among them. 

Breakthrough results were delivered on topics such as optical excitation, electron-photon entangled states, the role of electron correlation as well as imaging of helical edge states and Majorana fermions.

The event took place on the premises of the Berlin-Brandenburg Academy of Sciences. It has been generously supported by DFG as well as HZB.

Oliver Rader / kmh

  • Copy link

You might also be interested in

  • Metallic nanocatalysts: what really happens during catalysis
    Science Highlight
    10.09.2025
    Metallic nanocatalysts: what really happens during catalysis
    Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.
  • Shedding light on insulators: how light pulses unfreeze electrons
    Science Highlight
    08.09.2025
    Shedding light on insulators: how light pulses unfreeze electrons
    Metal oxides are abundant in nature and central to technologies such as photocatalysis and photovoltaics. Yet, many suffer from poor electrical conduction, caused by strong repulsion between electrons in neighboring metal atoms. Researchers at HZB and partner institutions have shown that light pulses can temporarily weaken these repulsive forces, lowering the energy required for electrons mobility, inducing a metal-like behavior. This discovery offers a new way to manipulate material properties with light, with high potential to more efficient light-based devices.
  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.