Tage der Forschung in Adlershof

Schülergruppe am BESSY II.

Schülergruppe am BESSY II.

Laborführungen durch das Institut für Nanometeroptik und Technologie mit Bernd Löchel.

Laborführungen durch das Institut für Nanometeroptik und Technologie mit Bernd Löchel.

Schülergruppe am PVcomB.

Schülergruppe am PVcomB.

Am 25. und 26. September fanden in Adlershof die jährlichen Tage der Forschung statt. Das HZB bot rund 90 Schülerinnen und Schülern in drei unterschiedlichen Programmpunkten einen Einblick in die Welt der Forschung.

Die Tage der Forschung bieten Schülern die einmalige Gelegenheit, sich vor Ort einen Eindruck von ihren zukünftigen Studien- und Arbeitsmöglichkeiten zu machen und direkt mit Wissenschaftlern ins Gespräch zu kommen. Das Veranstaltungsformat läuft bereits seit 1994 und wird durch Schulen aus Berlin und Brandenburg für Tagesausflüge nach Adlershof intensiv genutzt. Insgesamt finden an den zwei Tagen rund 50 Veranstaltungen, Experimente, Vorträge und Führungen statt. Daran nehmen in jedem Jahr etwa 1000 Berliner und Brandenburger Schülerinnen und Schüler teil. Die Tage der Forschung werden gemeinsam von der IGAFA, der Humboldt-Universität zu Berlin und der WISTA-MANAGEMENT GMBH veranstaltet.

Das HZB ermöglichte den Schülern Einblicke in den Forschungsalltag am HZB an drei unterschiedlichen Stationen. Am Elektronenspeicherring BESSY II wurden die Schülergruppen in die Funktionsweise der Forschungsanlage eingeführt und anschließend durch die Reinraumlabore des Instituts für Nanometeroptik und Technologie geführt. Am PVcomB bekamen die Schülerinnen und Schüler eine Einführung in die moderne Solarzellenforschung und Einblicke in die Labore des PVcomB. Das Schülerlabor in Adlershof beteiligte sich mit zwei spannenden Workshops zum Thema Intelligente Materialien. Schülerinnen und Schüler konnten die verblüffenden Eigenschaften von Formgedächtnislegierungen selbst erfahren.

A. Kubatzki

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.