Georg-Forster-Forschungspreis an Oguz Okay

Prof. Dr. Oguz Okay lehrt Physikalische Chemie an der Istanbul Technical University und gilt als einer der besten Polymerforscher der Türkei. Nun kommt er als Gast ans HZB.

Prof. Dr. Oguz Okay lehrt Physikalische Chemie an der Istanbul Technical University und gilt als einer der besten Polymerforscher der Türkei. Nun kommt er als Gast ans HZB.

Die Alexander von Humboldt-Stiftung hat gestern acht mit jeweils 60.000 Euro dotierten Georg Forster-Forschungspreise vergeben. Unter den Preisträgern ist  Prof. Dr. Oguz Okay (59), Istanbul Technical University, der nun für einen Gastaufenthalt an das HZB-Institut für Weiche Materie und Funktionale Materialien nach Berlin kommt.

Okay forscht auf dem Gebiet der Polymerchemie. Dabei verbindet er Grundlagenforschung mit interessanten Anwendungen. So hat er zum Beispiel makroporöse Organogele entwickelt, die helfen, Ölverschmutzungen im Meer zu beseitigen. Okay lehrt als Professor für physikalische Chemie an der Istanbul Technical University, Türkei.


Der Georg-Forster-Preis richtet sich an Forscherpersönlichkeiten aus Schwellen- und Entwicklungsländern, die durch ihre bisherige Forschung international sichtbar geworden sind und mit ihrer Arbeit helfen, entwicklungsrelevante Fragestellungen zu lösen. Die Preisträger werden nach Deutschland eingeladen, um Kooperationen mit Kolleginnen und Kollegen zu etablieren und auszubauen. Der mit je 60.000 Euro dotierte Forschungspreis wird vom Bundesministerium für wirtschaftliche Entwicklung und Zusammenarbeit finanziert.

Für die neue Ausschreibungsrunde nimmt die Humboldt-Stiftung bis 15. Januar 2015 Nominierungen für den Georg Forster-Forschungspreis entgegen. Das Georg Forster-Programm ist nach dem Naturforscher, Reiseschriftsteller und Journalisten Georg Forster (1754-1794) benannt, einem Freund Alexander von Humboldts.

Weitere Informationen zum Forschungspreis: www.humboldt-foundation.de/web/georg-forster-preis.html

Alexander von Humboldt-Stiftung/arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.