Maximum efficiency, minimum materials and complexity

The a-Si:H is deposited on a AZO-film that acts as a transparent front contact. A ITO-layer serves as rear contact. The organic sub-cell possesses a front contact made of a conductive polymer material (PEDOT) and a metallic rear contact.

The a-Si:H is deposited on a AZO-film that acts as a transparent front contact. A ITO-layer serves as rear contact. The organic sub-cell possesses a front contact made of a conductive polymer material (PEDOT) and a metallic rear contact. © Uni Potsdam

Silicon-based thin-film solar cell with a supplementary organic layer can utilise infrared light as well

The cell consists of many active layers, which taken together are less than one micron thick. The new hybrid solar cell is constructed of two extremely thin layers of amorphous silicon as well as an organic layer. Despite the low volume of materials employed, the hybrid cell attains recording-breaking efficiency of 11.7%.
The organic layer is made of fullerenes, also known as “soccer ball molecules”, mixed with semiconducting polymers. It is able to convert infrared light that cannot be utilised by the silicon layers into electrical energy.

The complementary compound of organic and inorganic materials in a stacked cell offers a promising option for future solar cells. The cell was jointly developed through the BMBF “Leading-edge Research and Innovation in the New German Länder” programme by teams at the University of Potsdam and HZB who have published their work in the renowned technical journal Advanced Materials.

The fundamental component of the cell is a very thin layer of amorphous silicon interspersed with hydrogen (hydrogenated amorphous silicon / a-Si:H). These kinds of simple thin-film solar cells do not attain high efficiencies, as they can only use photons in the blue and green regions of the spectrum.

Steffen Roland, a doctoral student in Prof. Dieter Neher’s group at the University of Potsdam, and Sebastian Neubert, a doctoral student under Prof. Rutger Schlatmann in PVcomB at HZB, added first another a-Si:H layer to a tandem cell and then deposited an additional organic layer that enables infrared light as well to be converted into electrical energy. In this manner, they were able to increase the efficiency of the triple-junction cell to over 11%. At the same time, the structure of this solar cell is able to withstand the effects of aging better. This success impressively demonstrates how the close cooperation of doctoral students from different fields of study (organic semiconductors and inorganic semiconductors) leads to new device structures with improved properties.

“The cell can be fabricated easily with established thin-film technology common in the industry, and is also suited to production in large sheets”, explains Schlatmann. Neher adds: “The high absorption coefficients of a-SI:H layers and the properties of the organic layer make possible an active stack no thicker than one micron - that is maximum efficiency with minimum materials!”


Article first published online 7 January 2015 in Advanced Materials: Hybrid Organic/Inorganic Thin-Film Multijunction Solar Cells Exceeding 11% Power Conversion Efficiency
DOI: 10.1002/adma.201404698

arö

  • Copy link

You might also be interested in

  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.