Maximale Effizienz, minimaler Einsatz

Die a-Si:H-Unterzellen werden auf dem transparenten Frontkontakt (AZO) abgeschieden, als Rückkontakt dient eine ITO-Schicht. Die organische Sub-Zelle besitzt einen Frontkontakt aus leitfähigem PEDOT und einen metallischen Rückkontakt.

Die a-Si:H-Unterzellen werden auf dem transparenten Frontkontakt (AZO) abgeschieden, als Rückkontakt dient eine ITO-Schicht. Die organische Sub-Zelle besitzt einen Frontkontakt aus leitfähigem PEDOT und einen metallischen Rückkontakt. © Uni Potsdam

Dünnschichtsolarzelle auf Siliziumbasis nutzt mit organischer Zusatzschicht auch infrarotes  Licht 

Die neue hybride Solarzelle ist aus zwei extrem dünnen amorphen Siliziumschichten sowie einer organischen Schicht aufgebaut, zusammen sind ihre aktiven Schichten nicht dicker als einen Mikrometer. Trotz minimalem Materialeinsatz erreicht die Hybridzelle damit einen Rekord-Wirkungsgrad von 11,7 %. Die organische Schicht besteht aus so genannten „Fußballmolekülen“ oder Fullerenen, die mit halbleitenden Polymeren gemischt sind. Diese Schicht wandelt auch noch das Infrarotlicht in elektrische Energie um, das in den Siliziumschichten nicht genutzt werden kann.

Die komplementäre Verbindung organischer und anorganischer Materialien in einer Stapelzelle ist eine vielversprechende Option für Solarzellen der Zukunft. Die Zelle wurde im Rahmen des BMBF-Programms „Spitzenforschung und Innovation  in den Neuen Ländern“ gemeinsam von Teams der Universität Potsdam und des Helmholtz-Zentrums Berlin (HZB) entwickelt, die ihre Arbeit nun im renommierten Fachmagazin „Advanced Materials“ publiziert haben.

Grundbaustein der Zelle ist eine sehr dünne Schicht aus amorphem Silizium, die mit Wasserstoff durchsetzt ist (a-Si:H). Solche einfachen Dünnschicht-Solarzellen erreichen nur geringe Wirkungsgrade und nutzen lediglich Photonen im blauen und grünen Bereich des Lichtspektrums.

Steffen Roland, Doktorand aus der Gruppe von Professor Dr. Dieter Neher an der Universität Potsdam, und Sebastian Neubert, Doktorand aus der Gruppe von Professor Dr. Rutger Schlatmann vom Kompetenzzentrum Dünnschicht- und Nanotechnologie für Photovoltaik (PVcomB) des HZB, haben diese Schicht zunächst um eine weitere a-Si:H-Schicht zu einer Tandemzelle erweitert und zusätzlich eine organische Schicht aufgebracht, die es ermöglicht, auch infrarotes Licht in elektrische Energie umzuwandeln. So konnten sie den Wirkungsgrad der Triplezelle  auf über 11 % steigern. Gleichzeitig ist diese Solarzellenarchitektur deutlich beständiger gegenüber Alterungseffekten. Dieser Erfolg zeigt eindrucksvoll, wie die enge Zusammenarbeit von Doktoranden aus unterschiedlichen Fachrichtungen (organische Halbleiter und  anorganische Halbleiter) zu neuen Devicestrukturen mit verbesserten Eigenschaften führt.

„Die Zelle lässt sich einfach mit etablierten Dünnschichttechnologien herstellen, die industriegängig und auch für die Produktion von großen Folien geeignet sind“, erklärt Rutger Schlatmann. Und Dieter Neher fügt an: „Die hohen Absorptionskoeffizienten der a-Si:H-Schichten und die Eigenschaften der organischen Schicht ermöglichen eine aktive Schichtstruktur, die nicht dicker als einen Mikrometer ist, das ist maximale Effizienz mit minimalem Einsatz!“.

Article first published online 7 January 2015 in Advanced Materials: Hybrid Organic/Inorganic Thin-Film Multijunction Solar Cells Exceeding 11% Power Conversion Efficiency
DOI: 10.1002/adma.201404698

arö

Das könnte Sie auch interessieren

  • Seminar | Bauwerkintegrierte Photovoltaik – Grundlagen, Gestaltung, Ausführung
    Nachricht
    16.08.2022
    Seminar | Bauwerkintegrierte Photovoltaik – Grundlagen, Gestaltung, Ausführung
    Die Seminarreihe richtet sich an Architektinnen und Architekten, die sich für neue Gestaltungsmöglichkeiten in der Planung und Ausführung mit Photovoltaik informieren möchten. Es ist aber auch interessant für Verantwortliche in der Projektentwicklung oder TGA-Planung sowie für Investierende.
  • Podcast | Der Klimawandel und die Stadt: Mehr Grün oder mehr Photovoltaik?
    Nachricht
    12.08.2022
    Podcast | Der Klimawandel und die Stadt: Mehr Grün oder mehr Photovoltaik?
    Wie umgehen mit begrenztem Platz? Städte und Kommunen müssen sich jetzt auf die Folgen des Klimawandels vorbereiten. Gründächer, begrünte Fassaden und großflächige Entsiegelungen könnten zu einem besseren Mikroklima beitragen. Aber wird der Platz nicht auch für Photovoltaik benötigt?

    In einem kontroversen Gespräch loten die Experten Björn Rau (HZB, BAIP) und Jens Hasse (Deutsches Institut für Urbanistik) die Optionen aus und finden neue Lösungen.

  • Alexander Gray kommt als Humboldt-Fellow ans HZB 
    Nachricht
    12.08.2022
    Alexander Gray kommt als Humboldt-Fellow ans HZB 
    Alexander Gray von der Temple University in Philadelphia, USA, arbeitet gemeinsam mit dem HZB-Physiker Florian Kronast an der Erforschung neuartiger 2D-Quantenmaterialien an BESSY II. Mit dem Stipendium der Alexander von Humboldt-Stiftung kann er diese Zusammenarbeit nun vertiefen. Bei BESSY II will er tiefenaufgelöste röntgenmikroskopische und -spektroskopische Methoden weiterentwickeln, um 2D-Quantenmaterialien und Bauelemente für neue Informationstechnologien zu untersuchen.