Spintronik: Der Tanz der Nanowirbel

In der Mitte einer dünnen magnetischen Schicht befindet sich ein Wirbel. Ein kurzer Strompuls durch einen Nanodraht lenkt den magnetischen Wirbel (Skyrmion), aus seiner Ruhelage aus. Auf einer Spiralbahn bewegt es sich zurück in seine Ausgangsposition. Dies lässt sich mit Hilfe der Röntgenholografie beobachten. Die spiralförmige Bahn und das Skyrmion sind schematisch oberhalb der Struktur dargestellt.

In der Mitte einer dünnen magnetischen Schicht befindet sich ein Wirbel. Ein kurzer Strompuls durch einen Nanodraht lenkt den magnetischen Wirbel (Skyrmion), aus seiner Ruhelage aus. Auf einer Spiralbahn bewegt es sich zurück in seine Ausgangsposition. Dies lässt sich mit Hilfe der Röntgenholografie beobachten. Die spiralförmige Bahn und das Skyrmion sind schematisch oberhalb der Struktur dargestellt. © Johannes Gutenberg-Universität Mainz

Mit Hilfe der Röntgenholografie gelang es einem Forscherteam, die Bewegungsmuster sogenannter Skyrmionen sichtbar zu machen. Dabei stießen die Forscher auf eine neue Erkenntnis: Die Nanowirbel besitzen eine Masse. Die Arbeit ist am 02. Februar 2015 in „Nature Physics" erschienen.

Das Phänomen ist bekannt: Wenn ein Kreisel angeschubst wird oder auf einer geneigten Fläche rotiert, bewegt er sich meist nicht geradlinig vorwärts, sondern beschreibt kleine Bögen. Forschern der TU Berlin und des HZB sowie der Universität Mainz ist es zusammen mit Forschungsteams aus den Niederlanden und der Schweiz nun gelungen, solche Bewegungsmuster auch in einem magnetischen Schichtsystem sichtbar zu machen – und zwar in Form von kleinen magnetischen Nanowirbeln. Dabei stießen sie auf einen neuen Befund: Die Nanowirbel besitzen eine Masse.

Wirbel von 100 Nanometern Durchmesser

„Die magnetischen Nanowirbel können wir mit Hilfe von Magnetfeldern gezielt erzeugen und dann ‚anschubsen‘, sodass sie aus ihrer Gleichgewichtslage herausgelenkt werden“, erklärt Dr. Felix Büttner, der diese Forschungen in seiner Doktorarbeit vorangetrieben hat. „Wir konnten dann sehr genau verfolgen, auf welchem Weg diese Skyrmionen, wie diese besonderen Nanowirbel genannt werden, sich in ihre Ruhelage zurückbewegen“, so Büttner weiter.

Die Wirbel entstehen in dünnen magnetischen Schichtsystemen, in denen abwechselnd Lagen aus einer Kobalt-Bor Legierung und Platin-Schichten übereinandergestapelt sind. Jede Einzelschicht ist weniger als ein Nanometer dick. Dadurch entstehen besondere magnetische Eigenschaften. Der Durchmesser dieser magnetischen Wirbel ist nicht größer als 100 Nanometer. Das ist etwa ein Tausendstel eines Haardurchmessers.

Holografische Aufnahmen an BESSY II

Mit einer besonderen Technik gelang es den Forschern, die Bewegung der Skyrmionen mit einer Präzision von wenigen Nanometern in Zeitabständen von weniger als einer Nanosekunde aufzunehmen und zu dokumentieren. Ermöglicht wurde dies durch holografische Aufnahmetechniken mittels intensiver Röntgenpulse an der Berliner Synchrotronquelle BESSY II am HZB. Diese holografischen Aufnahmetechniken sind am TU-Fachgebiet „Nanometeroptik und Röntgenstreuung“ von Prof. Dr. Stefan Eisebitt gemeinsam mit dem HZB über Jahre weiterentwickelt worden.

Masse des Wirbels kann nicht Null sein

Was Büttner und seine Mitstreiter in den Röntgenhologrammen sahen, war bemerkenswert: „Ähnlich wie ein angestoßener Kreisel bewegt sich der Nanowirbel nicht geradlinig, sondern auf einer spiralförmigen Bahn“, erklärt Büttner. „Durch den Vergleich unserer Messungen mit Modellrechnungen stellten wir fest, dass sich diese spiralförmige Bewegung nur erklären lässt, wenn das Skyrmion eine Masse besitzt.“

Dies ist ein wichtiger Befund, da die hier beobachteten Nanowirbel nur eine spezielle Art von in der Natur zu findenden Skyrmionen sind. „Skyrmionen wurden in der Vergangenheit vielfach als Teilchen ohne Masse beschrieben“, erläutert Christoforos Moutafis vom Paul Scherrer Institut, der sich schon lange mit der theoretischen Beschreibung solcher Strukturen auseinandersetzt. Daher wird das in dieser Arbeit etablierte „Konzept“ von Masse auch zum Verständnis dieser Teilchen beitragen, wie die Forscher in der renommierten Fachzeitschrift „Nature Physics“ darlegen.

Konkrete Anwendungen in der Datenverarbeitung

Speziell diese magnetischen Nanowirbel in dünnen magnetischen Schichten könnten auch für konkrete Anwendungen in Frage kommen: Sie werden bereits heute als alternative Informationsträger in der Datenspeicherung und -verarbeitung diskutiert. Forscher vermuten, dass sich aufgrund ihrer „Wirbeleigenschaft“ Bits, also Informationseinheiten, auf kleinerem Raum und deutlich stabiler als bisher speichern und bewegen lassen. Möglicherweise können nun die neuen Einsichten in das Verhalten der Skyrmionen dazu beitragen, solche neuartigen Konzepte für die Informationsverarbeitung zu verwirklichen.

Nature Physics , 02. Feb. 2015 (Advanced Online Publication).  doi:10.1038/nphys3234
'Dynamics and inertia of skyrmionic spin structures'
Felix Büttner, C. Moutafis, M. Schneider, B. Krüger, C. M. Günther, J. Geilhufe, C. v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C. A. F. Vaz, J. H. Franken, H. J. M. Swagten, M. Kläui and S. Eisebitt

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    31.01.2025
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    In der Titelgeschichte stellen wir Astrid Brandt vor. Sie leitet die Nutzerkoordination am Helmholtz-Zentrum Berlin. Mit ihrem Team behält sie stets den Überblick über Anträge, Messzeiten und Publikationen der bis zu 1.000 Gastforschenden, die jedes Jahr zu BESSY II kommen. Naturwissenschaften faszinierten sie schon immer.

    Doch auch ihre zweite Leidenschaft, die Musik, hat sie bis heute nicht losgelassen.

  • Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Science Highlight
    20.01.2025
    Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.
  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.