Erstmals mit Details: Wie giftiges Kohlenmonoxid am Katalysator zu Kohlendioxid verbrennt

Die Abbildung illustriert eine Momentaufnahme w&auml;hrend der Reaktion von CO zu CO<sub>2</sub>, wie sie nun erstmals am SLAC gelungen ist.

Die Abbildung illustriert eine Momentaufnahme während der Reaktion von CO zu CO2, wie sie nun erstmals am SLAC gelungen ist. © SLAC National Accelerator Laboratory

Ein internationales Forschungsteam hat erstmals die flüchtigen Zwischenstufen beobachtet, die sich bilden, wenn Kohlenmonoxid auf einer heißen Ruthenium-Oberfläche, einem einfachen Katalysator, oxidiert. Sie nutzten dafür ultrakurze Röntgenblitze und Laserpulse am SLAC National Accelerator Laboratory, Menlo Park, Kalifornien. Dabei erhitzte ein Laserblitz zunächst die Ruthenium-Oberfläche und aktivierte so die absorbierten Kohlenmonoxid-Moleküle und Sauerstoff-Atome. Über Röntgenabsorptionsspektroskopie konnte das Team dann ermitteln, wie sich die elektronische Struktur der Sauerstoffatome veränderte, während sie mit Kohlenstoff-Atomen Bindungen anbahnten. Die beobachteten Übergangszustände stimmen mit quantenchemischen Berechnungen gut überein.

Überraschend war jedoch, wie viele Reaktionspartner in einen Übergangszustand aktiviert wurden – und ebenso überraschend war die Entdeckung, dass nur ein kleiner Bruchteil davon anschließend tatsächlich stabile CO2-Moleküle bildet. „Es ist so, als wenn man Murmeln einen Berg hochschießt und die meisten, die es bis oben geschafft haben,  rollen einfach wieder auf der gleichen Seite herunter“, sagt Anders Nilsson, Professor am SLAC/Stanford SUNCAT Center for Interface Science and Catalysis und an der Stockholm University, der das Forschungsprojekt geleitet hat. 

Ein Team vom Institut für Methoden und Instrumentierung für Forschung mit Synchrotronstrahlung am Helmholtz-Zentrum Berlin (HZB) hat zu diesem Forschungsprojekt am SLAC beigetragen. Die fruchtbare Zusammenarbeit wurde durch die Volkswagen-Stiftung sowie das Helmholtz Virtual Institute “Dynamic Pathways in Multidimensional Landscapes” ermöglicht. „Diese Ergebnisse helfen uns, eine entscheidende Reaktion an einem Katalysator zu verstehen, die auch für den Umweltschutz sehr wichtig ist“, erklärt HZB-Physiker Martin Beye.

Zur ausführlichen Presseinfo auf der SLAC-Website

Referenz: H. Öström et al., Science, 12 February 2015 (10.1126/science.1261747)

arö/SLAC

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.
  • KI analysiert Dinosaurier-Fußabdrücke neu
    Science Highlight
    27.01.2026
    KI analysiert Dinosaurier-Fußabdrücke neu
    Seit Jahrzehnten rätseln Paläontolog*innen über geheimnisvolle dreizehige Dinosaurier-Fußabdrücke. Stammen sie von wilden Fleischfressern, sanften Pflanzenfressern oder sogar frühen Vögeln? Nun hat ein internationales Team künstliche Intelligenz eingesetzt, um dieses Problem anzugehen – und eine kostenlose App entwickelt, die es jeder und jedem ermöglicht, die Vergangenheit zu entschlüsseln.