Details of a crucial reaction: Physicists uncover oxidation process of carbon monoxide on a ruthenium surface

This illustrates a moment captured for the first time in experiments at SLAC National Accelerator Laboratory. The CO-molecule and oxygen-atoms are attached to the surface of a ruthenium catalyst. When hit with an optical laser pulse, the reactants vibrate and bump into each other and the carbon atom forms a transitional bond with the lone oxygen center. The resulting CO<sub>2</sub> detaches and floats away.

This illustrates a moment captured for the first time in experiments at SLAC National Accelerator Laboratory. The CO-molecule and oxygen-atoms are attached to the surface of a ruthenium catalyst. When hit with an optical laser pulse, the reactants vibrate and bump into each other and the carbon atom forms a transitional bond with the lone oxygen center. The resulting CO2 detaches and floats away. © SLAC National Accelerator Laboratory

An international team has observed the elusive intermediates that form when carbon monoxide is oxidized on a hot ruthenium metal surface. They used ultrafast X-ray and optical laser pulses at the SLAC National Accelerator Laboratory, Menlo Park, California. The reaction between carbon monoxide and adsorbed oxygen atoms was initiated by heating the ruthenium surface with optical laser pulses. Directly afterwards, changes in the electronic structure of oxygen atoms were probed via X-ray absorption spectroscopy as they formed bonds with the carbon atoms.The observed transition states are consistent with density functional theory and quantum oscillator models.

The researchers were surprised to see so many of the reactants enter the transition state - and equally surprised to discover that only a small fraction of them go on to form stable carbon dioxide. The rest break apart again. "It's as if you are rolling marbles up a hill, and most of the marbles that make it to the top roll back down again," says Anders Nilsson, professor at the SLAC/Stanford SUNCAT Center for Interface Science and Catalysis and at Stockholm University, who led the research.

A team from the Institute of Methods and Instrumentation in Synchrotron Radiation Research from HZB has contributed in this research activities at SLAC sponsored by the Volkswagen-Foundation and the Helmholtz Virtual Institute “Dynamic Pathways in Multidimensional Landscapes” in which HZB and SLAC collaborate.

“These results help us to understand a really crucial reaction with high relevance for instance for environmental issues and to see which role catalysts may play”, Martin Beye of the HZB Team explains.

See full press release at SLAC-Website

Citation: H. Öström et al., Science, 12 February 2015 (10.1126/science.1261747)


arö/SLAC

  • Copy link

You might also be interested in

  • Industrial Research Fellow at HZB: More time for discussions
    Interview
    12.05.2025
    Industrial Research Fellow at HZB: More time for discussions
    The South African chemist Denzil Moodley is the first Industrial Research Fellow at HZB. He is playing a leading role in the CARE-O-SENE project. The Fellowship program aims to further accelerate the development of an efficient catalyst for a sustainable aviation fuel. An interview about the CARE-O-SENE project and why it is so important for scientists from industry and public research to work together.
  • Perovskites: Hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Perovskites: Hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.