Insight into inner magnetic layers

The insulating LFO-layer in its normal state is antiferromagnetically ordered (AFM) and has no ferromagnetic domains. Due to the proximity to the ferromagnetic LSMO, ferromagnetic domains develop (white arrows) at the interface, pointing into the opposite direction of the LSMO-layer.</p>
<p>

The insulating LFO-layer in its normal state is antiferromagnetically ordered (AFM) and has no ferromagnetic domains. Due to the proximity to the ferromagnetic LSMO, ferromagnetic domains develop (white arrows) at the interface, pointing into the opposite direction of the LSMO-layer.

© HZB

Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance – results that can help in designing spintronic components.

Research teams from Paris, Madrid and Berlin have observed for the first time how magnetic domains mutually influence one another at interfaces of spintronic components. Using measurements taken at BESSY II, they could demonstrate that what are known as spin filters form between the outer ferromagnetic layers and the inner anti-ferromagnetic insulating layer, influencing tunnel magnetoresistance (TMR). In doing so, the teams enhanced our understanding of processes that are important for future TMR data storage devices and other spintronic components. Their results have now been published in Nature Communications (DOI: 10.1038/ncomms7306).

Layers of magnetic materials are found in every hard drive and in every read/write head today. These are sandwiches made of complex heterostructures in which the different layers have typical thicknesses of only a few nanometres. An effect of quantum physics called tunnel magnetoresistance (TMR) is critical for their operation. It occurs when two ferromagnetic layers are separated from one another by an insulating layer several plies of atoms thick, like cheese between two slices of bread. As long as the magnetisation in both “slices” is parallel, the electrons can tunnel through the “cheese”, i.e. the device resistance is low. However, if the magnetisation changes in one of the layers, the electrons can no longer tunnel through the middle layer, i.e. the resistance is high. In this way, the electrical resistance can be precisely controlled through the influence of a magnetic field on one of the two outer layers, and be associated with the binary values of zero and one used for calculations.

New effect observed

The teams from France, Spain and HZB have now discovered that in such sandwiches combining different transition metal oxides, new interfacial effects can strongly influence the amplitude of the TMR This is what the French team under Manuel Bibes and Agnès Barthelemy of the Unité de Physique, CNRS/Thales, Palaiseau (working in collaboration with the team of Jacobo Santamaria in Madrid) had initially observed in measuring the electron transport characteristics. They were researching a system of two LSMO (La0.7Sr0.3MnO3) layers that were separated by a very thin layer of LFO (LaFeO3). The LSMO layers were ferromagnetic while the LFO insulating layer was anti-ferromagnetic.

New magnetic order at the interface

Measurements using the ALICE chamber and from the XPEEM instrument in beamline UE49 at BESSY II have clearly shown what is happening in the interface between the ferromagnetic layers and the anti-ferromagnetic inner layer. The teams were able to decode how each of the magnetic elements manganese and iron were oriented at the interfaces using the XPEEM instrument. “We saw how new magnetic phases arise at the boundaries that function like spin filters”, explained Sergio Valencia, who heads the HZB team. “Put simply: the iron atoms near the interface are influenced by the manganese magnetic moments; they then orient their magnetic moments antiparallel to those of the manganese atoms and thus form ferromagnetic domains. We have thus demonstrated experimentally for the first time that ferromagnetic domains can be induced in non-ferromagnetic barrier layers.” The French team carried out subsequent calculations of how these kinds of spin filters effect the tunnel magnetoresistance and could reproduce the experimental data.

“These kinds of complex oxide heterostructures as we investigated here could play an important role in future spintronics”, says Valencia. The results that have now been published in Nature Communications explain an important process that has not been taken into account so far, and they therefore help in designing tunnel barriers with the desired properties.

To the publication in Nature Communications: "Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping” DOI: 10.1038/ncomms7306

You might also be interested in

  • Catherine Dubourdieu receives ERC Advanced Grant
    News
    30.03.2023
    Catherine Dubourdieu receives ERC Advanced Grant
    Prof. Dr. Catherine Dubourdieu heads the Institute “Functional Oxides for Energy-Efficient Information Technology” at HZB and is Professor at the Physical and Theoretical Chemistry division at Freie Universität Berlin. The physicist and materials scientist specialises in nanometre-sized functional oxides and their applications in information technologies. She has now been awarded a prestigious ERC Advanced Grant for her research project “LUCIOLE”, which aims at combining ferroelectric polar textures with conventional silicon technologies.
  • Perovskite solar cells from the slot die coater - a step towards industrial production
    Science Highlight
    16.03.2023
    Perovskite solar cells from the slot die coater - a step towards industrial production
    Solar cells made from metal halide perovskites achieve high efficiencies and their production from liquid inks requires only a small amount of energy. A team led by Prof. Dr. Eva Unger at Helmholtz-Zentrum Berlin is investigating the production process. At the X-ray source BESSY II, the group has analyzed the optimal composition of precursor inks for the production of high-quality FAPbI3 perovskite thin films by slot-die coating. The solar cells produced with these inks were tested under real life conditions in the field for a year and scaled up to mini-module size.
  • Superstore MXene: New proton hydration structure determined
    Science Highlight
    13.03.2023
    Superstore MXene: New proton hydration structure determined
    MXenes are able to store large amounts of electrical energy like batteries and to charge and discharge rather quickly like a supercapacitor. They combine both talents and thus are a very interesting class of materials for energy storage. The material is structured like a kind of puff pastry, with the MXene layers separated by thin water films. A team at HZB has now investigated how protons migrate in the water films confined between the layers of the material and enable charge transport. Their results have been published in the renowned journal Nature Communications and may accelerate the optimisation of these kinds of energy storage materials.