Universität Bielefeld und HZB kooperieren zu Nanoschichten und komplexen Materialien

Anke Kaysser-Pyzalla, Thomas Frederking, Gerhard Sagerer und Stephan Becker (v. l.) unterzeichnen den Kooperationsvertrag.Foto: Universität Bielefeld

Anke Kaysser-Pyzalla, Thomas Frederking, Gerhard Sagerer und Stephan Becker (v. l.) unterzeichnen den Kooperationsvertrag.Foto: Universität Bielefeld

Im Februar 2015 haben Uni-Rektor Professor Dr.-Ing. Gerhard Sagerer, Uni-Kanzler Dr. Stephan Becker und die Geschäftsführer des HZB, Professorin Dr.-Ing. Anke Kaysser-Pyzalla und Thomas Frederking eine Vereinbarung über die Zusammenarbeit unterschrieben. Darin heißt es: „Die Kooperation soll zur Steigerung der wissenschaftlichen Exzellenz der Partner und zur Entwicklung regionaler Kompetenznetzwerke in Forschung, Lehre und Ausbildung des wissenschaftlichen Nachwuchses beitragen.“

Die HZB-Spitze besuchte im Februar die Universität Bielefeld, speziell die Laborräume für Helium-Ionen-Mikroskopie, für die Herstellung ultradünner Schichtsysteme sowie für Kleinwinkelröntgenstreuung und Polymer-Charakterisierung. Außerdem wurde der neue Ersatzneubau für die Experimentalphysik besichtigt. In Gesprächen mit dem Physiker Professor Dr. Günter Reiss, Arbeitsgruppe Dünne Schichten & Physik der Nanostrukturen, und dem Chemiker Professor Dr. Thomas Hellweg, Arbeitsgruppe Physikalische und Biophysikalische Chemie, wurden konkrete Inhalte der weiteren Zusammenarbeit ausgelotet: Geräte und Einrichtungen sollen gemeinsam genutzt werden, Wissenschaftliche Beschäftige des HZB sollen an der Universität lehren können und Professuren sollen gemeinsam berufen werden. Dafür legt die Vereinbarung den Grundstein. 

Zusammenarbeit seit 2013

Die beiden Institutionen arbeiten bereits seit 2013 zusammen: Im DFG- geförderten Schwerpunktprogramm „Topologische Isolatoren“ erforschen Physikerinnen und Physiker der Universität Bielefeld und des HZB Materialien mit neuen Quanteneigenschaften für künftige Elektronik-Bauelemente. Die Bielefelder Chemie kooperiert darüber hinaus in einem vom BMBF geförderten Verbundforschungsvorhaben mit dem HZB: Gemeinsam sollen neue experimentelle Möglichkeiten zur Untersuchung von Nanomaterialien entwickelt werden.

Schwerpunkte an der Uni Bielefeld

Die Universität Bielefeld hat sich in ihrem Profilschwerpunkt Molekular- und Nanowissenschaften an den Schnittstellen zwischen Physik, Chemie, Biologie und Bioinformatik national und international sichtbar positioniert. Die aktuellen Forschungsschwerpunkte reichen von der Physik und Chemie molekularer Einzelprozesse in organischen Systemen über Nanoschichten und Nanopartikel bis hin zur Erforschung bakterieller, pflanzlicher und tierischer Zellen.


Uni Bielefeld/HZB

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.