New Opportunities for students in energy research:

Leading scientists presented the research programme for the two new graduate schools, HZB is organising together with HUB and UP.</p> <p>

Leading scientists presented the research programme for the two new graduate schools, HZB is organising together with HUB and UP.

© Jennifer Bierbaum/HZB

HZB starts two Graduate Schools with Humboldt-Universität zu Berlin and Universität Potsdam

Friday, 27 March 2015, the start of two new graduate schools on solar energy research was celebrated at Helmholtz-Zentrum Berlin (HZB). Hybrid4Energy, the Graduate School of Hybrid Materials for Efficient Energy Generation and Information Technologies, is a joint venture of Humboldt-Universität zu Berlin (HUB) and HZB. The Graduate School HyPerCell focuses on a new type of thin film solar cells based on hybrid perovskite absorber materials and is organised by Universität Potsdam (UP) and HZB.

Opened by Prof. Anke Kaysser-Pyzalla, Scientific Director HZB, Prof. Jan-Hendrick Olbertz, President HUB and Prof. Robert Seckler, Vice President for Research and Junior Academics at UP, leading scientists of HZB and both universities gave overviews about the research programmes.

Hybrid4Energy, the Graduate School of Hybrid Materials for Efficient Energy Generation and Information Technologies, is a coordinated programme of the HUB and the HZB.  It offers a structured, three-year period of multidisciplinary lectures and research on hybrid organic/inorganic systems for electronic, optoelectronic and photovoltaic devices. The knowledge gained will then be applied to the fields of renewable energy and next generation information technology. The programme embraces the full range of experiments and theory, physics and chemistry, as well as fundamental and applied research. This will allow the participants to bridge commonly separated disciplines of research, which will enable novel research approaches and concepts. The research-based training will be supplemented by measures to support the provision of key competences, under the guidance of the Humboldt Graduate School (HGS) of the HUB.

The Graduate School on Perovskites, HyPerCell, is organized by Universität Potsdam (UP) and HZB. Students will work on a new type of thin film solar cells based on so-called organometallic perovskites. Despite the recent achievements reported for perovskite-based solar cells, many basic material properties including charge transport and recombination processes are not yet understood on a fundamental level. Currently, the highest efficiencies for these solar cells are achieved using a lead-based compound. Therefore a partial or complete replacement of this metal by a non-toxic alternative will be one of the goals of the research programme. Since research on perovskite solar cells is highly interdisciplinary, the school will provide PhD students with comprehensive knowledge and understanding of the chemistry and physics of perovskite-based tandem devices during a structured, three-year curriculum. The programme comprises lectures, lab-courses, workshops and seminar, offered by renowned specialists in their respective field. The research-based training will be supplemented by measures to support the provision of key competences, under the guidance of the Potsdam Graduate School (PoGS) of the UP.

More Information on Hybrid4Energy

More Information on HyPerCell

arö

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.