HZB wirbt EU-Fördermittel für Solarzellenforschung ein

Im EMIL-Teillabor „SISSY“ (Solar Energy Materials In-Situ Spectroscopy at the Synchrotron) können Materialsysteme für die Photovoltaik unter Ultrahochvakuum und mit einer Vielzahl an Methoden untersucht werden.

Im EMIL-Teillabor „SISSY“ (Solar Energy Materials In-Situ Spectroscopy at the Synchrotron) können Materialsysteme für die Photovoltaik unter Ultrahochvakuum und mit einer Vielzahl an Methoden untersucht werden. © R.G. Wilks

Marcus Bär und sein Team sind an zwei internationalen Projekten beteiligt, die durch das EU-Forschungsrahmenprogramm „Horizon 2020“ gefördert werden. Beide Forschungsvorhaben befassen sich mit der Entwicklung und Optimierung von hocheffizienten Dünnschichtsolarzellen auf der Basis von Chalkopyriten („Sharc25“) bzw. Kesteriten („SWInG“).  Für das HZB bringen sie  zusammen rund 0,9 Mio. Euro zusätzliche Forschungsmittel für die Solarzellenforschung ein.

Die beiden Projekte Sharc25 und SWInG werden in der Sektion Low Carbon Energy gefördert. „Das HZB bringt bei diesen Projekten insbesondere hervorragende Möglichkeiten für die Analyse und Charakterisierung von Materialien und Schichtstapeln ein. So können wir schon bald mit dem Instrumentenpark im neu errichteten Labor EMIL an BESSY II die Grenzflächeneigenschaften von Solarzellstrukturen mit verschiedenen komplementären Methoden untersuchen“, erklärt Prof. Dr. Marcus Bär, der am HZB die Nachwuchsgruppe Grenzflächendesign leitet.

Sharc25 steht für „Super high efficiency Cu(In, Ga)Se2 thin-film solar cells approaching 25%“. Dabei handelt es sich um Konzepte für so genannte CIGSe-Dünnschicht-Solarzellen aus Kupfer, Indium, Gallium und Selen. Angestrebt werden  Wirkungsgrade von 25 %, was deutlich über dem Wirkungsgrad von polykristallinen Siliziumzellen liegt. Eine solche Effizienzsteigerung würde der europäischen PV-Industrie einen signifikanten Wettbewerbsvorteil verschaffen. Das Forschungsvorhaben wird durch das Zentrum für Sonnenenergie und Wasserstoff-Forschung in Baden-Württemberg (ZSW) koordiniert  und bezieht Partner aus sieben Ländern ein. Das Projekt wird mit insgesamt 6,15 Mio. Euro gefördert, davon gehen 450.000 Euro an das HZB. „Wir werden die Eigenschaften der Schichtstapel systematisch untersuchen, um insbesondere die Prozesse an den Grenzflächen zu verstehen. Das ist die Grundvoraussetzung, um die Effizienz bis nahe an ihre theoretische Grenze  hochzutreiben“, sagt Marcus Bär.

SWInG (Development of Thin Film Solar Cells based on Wide Band Gap Kesterite Absorbers) hat ein Volumen von 3,8 Mio. Euro und wird von der Interuniversitair Micro-Elektronica Centrum (imec), Belgien) koordiniert, beteiligt sind zudem Partner aus den Niederlanden, Frankreich, Deutschland und Schweden. An das HZB fließen 450.000 Euro. Ziel des Vorhabens ist es, günstige und zuverlässige Tandem-Solarzellen zu entwickeln, die das Potenzial haben, über 30 % des Sonnenlichts in Strom umzuwandeln. Die dafür benötigten Solarzellabsorber mit großer Bandlücke sollen durch eine Modifizierung der Kesterit-Komposition erreicht werden. „Kesterit-Absorberschichten haben den Vorteil, dass sie aus reichlich verfügbaren Elementen bestehen. Außerdem können wir über die Komposition die Bandlücken gezielt einstellen und diese so optimal an die Anforderungen in der Tandem-Solarzelle anpassen“, erklärt Bär. 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.