Tintendruck-Verfahren für Kesterit-Solarzellen

Die Zeichnung skizziert das Tintendruck-Verfahren für eine Kesterit-Schicht.

Die Zeichnung skizziert das Tintendruck-Verfahren für eine Kesterit-Schicht. © HZB

Querschnitt mit dem Rasterelektronenmikroskop durch eine gedruckte Kesterit-Solarzelle: auf einem Mo-Substrat befindet sich die aufgedruckte Kesterit-Schicht (CZTSSe).

Querschnitt mit dem Rasterelektronenmikroskop durch eine gedruckte Kesterit-Solarzelle: auf einem Mo-Substrat befindet sich die aufgedruckte Kesterit-Schicht (CZTSSe). © HZB

Ein Team aus dem HZB hat ein neues Verfahren entwickelt, um mit einer speziellen Tinte Kesterit-Absorberschichten (CTZSSe) Tropfen für Tropfen auszudrucken. Solarzellen mit so produzierten Absorberschichten erreichten Wirkungsgrade von 6,4 %. Auch wenn dies noch deutlich unter den Rekordwerten für Kesterit-Solarzellen liegt, ist das Tintendruck-Verfahren interessant für die industrielle Produktion, da es extrem ökonomisch ist und kaum Abfälle erzeugt.

Ein Tintendrucker platziert Material genau dort, wo es benötigt wird. Daher verspricht dieses Verfahren eine deutliche Minimierung der Materialkosten. Zudem lässt sich das Verfahren auch für Rolle-zu-Rolle-Beschichtungen bei der industriellen Massenfertigung nutzen.

Kesterit-Tinte für das Aufschleuderverfahren verbessert

Dr. Xianzhong Lin vom Institut für Heterogene Materialsysteme des HZB hat nun mit einer Kesterit-Tinte gearbeitet, die ursprünglich entwickelt wurde, um auf ein rotierendes Substrat aufgeschleudert und verteilt zu werden. Dieses so genannte „Spin coating“ ist ein etabliertes Verfahren, bei dem allerdings ein erheblicher Teil der wertvollen Ausgangsmaterialien verschwendet wird. Lin optimierte die Kesterit-Tinte nun für ein am HZB entwickeltes Tintendruck-Verfahren. Dabei gelang es ihm, die Viskosität der Tinte gezielt zu beeinflussen, bis sie perfekt zum Produktionsverfahren passte, bei dem der Tintendruckkopf schrittweise über das Substrat geführt wird. Der so entstandene homogene Cu-Zn-Sn-S Vorläuferfilm wurde anschließend zu einer homogenen Kesterit-Schicht verbacken. Schon eine erste Optimierung führte zu Solarzellen mit Wirkungsgraden um 6,4 %. 

Ökonomisch und umweltfreundlich: Kaum Abfall

„Der große Vorteil des Tintendruckverfahrens besteht darin, dass vergleichsweise wenig Material verloren geht:  So sind weniger als 20 Mikroliter Tinte nötig, um eine Fläche von rund 6,5 Quadratzentimetern mit einer Kesterit-Schicht von einem Mikrometer zu beschichten“, sagt Lin. “Auch wenn der Wirkungsgrad jetzt noch weit von den 12,7% entfernt ist, die Kesterit-Zellen erreichen können, sehen wir in diesem Verfahren enorme Chancen für die industrielle Massenproduktion.”

Das Team arbeitet nun daran, das Verfahren zu optimieren und den Wirkungsgrad zu steigern. Ihr Ziel ist es, komplette Solarzellen auszudrucken, ohne auf teure Vakuum-Technologie angewiesen zu sein. „Die Arbeit zeigt einen neuen Weg, um einfach, preiswert und umweltfreundlich Dünnschicht-Solarzellen auf Kesterit-Basis zu produzieren“, sagt Institutsleiterin Prof. Dr. Martha Lux-Steiner. 

Die Ergebnisse sind nun hier publiziert: X. Lin, J. Kavalakkatt, M. C. Lux-Steiner, A. Ennaoui,  Inkjet-printed Cu2ZnSn(S, Se)4 solar cells, Adv. Sci. 2015.

DOI: 10.1002/advs.201500028

Former results have been published here : X. Lin, J. Kavalakkatt, N. Brusten, M. C. Lux-Steiner, A. Ennaoui, Inkjet printing of Kesterite and Chalcopyrite thin film absorbers for low cost photovoltaic application, in 29th Eur. PV Solar Energy Conf., Vol. 3DV.2.64, Amsterdam 2014, 1876.

LX/arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.
  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.