Success rate 100 percent: HZB teams get third party funding for Solar Fuel projects

At the HZB Institute for Solar Fuels, also nanostructures in metal oxides are explored as efficient catalyst materials for artificial photosynthesis.

At the HZB Institute for Solar Fuels, also nanostructures in metal oxides are explored as efficient catalyst materials for artificial photosynthesis. © HZB

Converting solar energy and storing it in form of solar fuels, is one of the great scientific and technological challenges today to enable the transition into a more sustainable future powered by renewable energies. Scientists at the HZB institute for Solar Fuels are exploring new semiconductor materials in order to develop compact, robust and economic solutions for “artificial photosynthesis”. They have submitted four research projects in collaboration with partners from universities for funding by the German Research Association (Deutsche Forschungsgemeinschaft DFG) in the Priority Programme „Fuels Produced Regeneratively Through Light-Driven Water Splitting” (SPP 1613). All four projects have now been approved for funding.

“A success rate of 100 percent in this highly competitive call is truly remarkable, since only half of the submitted proposals could be funded”, Professor Roel van de Krol, head of the HZB Institute for Solar Fuels states. “This means we can further strengthen and expand our institute’s activities”. The first three projects are extensions of already running projects, while the 4th one is a new activity.

The objective is to investigate artificial photosynthesis based on solid-state inorganic materials from a fundamental scientific perspective as well as the aspects of material science required for its technological implementation. The goal is to convert solar energy into storable fuels, in this case hydrogen, which has a high gravimetric energy density and can be safely stored and used whenever needed, either in a fuel cell to generate electricity or as a base component for the production of synthetic hydrocarbon fuels.


The approved projects are:

  • Development of catalysts, namely manganese oxides and molybdenum sulphides, for an implementation in a light-driven water-splitting device using a multi-junction solar cell. Partner: Prof. H. Dau (PI, FU-Berlin), Prof. P. Kurz (University Freiburg i. Br.), Prof. S. Fiechter (HZB).
  • High-throughput characterization of multinary transition metal oxide and oxynitride libraries. New materials for solar water splitting with improved properties. Partner: Prof. Wolfgang Schuhmann (PI, Ruhr University Bochum), Prof. Alfred Ludwig (Ruhr University Bochum), Prof. S. Fiechter (HZB).
  • Novel thin film composites and co-catalysts for visible light-induced water splitting. Partner: M. Behrens (Uni Duisburg), A. Fischer (Uni Freiburg), M. Lerch (TU Berlin), T. Schedel-Niedrig (HZB).
  • Development of optimum bandgap photoanodes for tandem water-splitting cells based on doped complex metal oxides and III-V semiconductors coupled to water oxidation electrocatalysts. Partner: R. Beranek (PI, Ruhr University Bochum), A. Devi (Ruhr University Bochum), R. Eichberger (HZB).

arö

  • Copy link

You might also be interested in

  • Sasol and HZB deepen collaboration with strategic focus on digitalisation
    News
    08.10.2025
    Sasol and HZB deepen collaboration with strategic focus on digitalisation
    Sasol Research & Technology and Helmholtz Zentrum Berlin (HZB) are expanding their partnership into the realm of digitalisation, building on their joint efforts in the CARE-O-SENE project and an Industrial Fellowship launched earlier this year. This new initiative marks a significant step forward in leveraging digital technologies to accelerate catalyst innovation and deepen scientific collaboration.
  • Technology Transfer Prize Ceremony 2025
    News
    07.10.2025
    Technology Transfer Prize Ceremony 2025
    This year’s Technology Transfer Prize Ceremony will take place on October 13 at 2 pm in the Lecture Hall, BESSY II Building, Adlershof.
  • Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Science Highlight
    01.10.2025
    Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Researchers have for the first time measured the true properties of individual MXene flakes — an exciting new nanomaterial with potential for better batteries, flexible electronics, and clean energy devices. By using a novel light-based technique called spectroscopic micro-ellipsometry, they discovered how MXenes behave at the single-flake level, revealing changes in conductivity and optical response that were previously hidden when studying only stacked layers. This breakthrough provides the fundamental knowledge and tools needed to design smarter, more efficient technologies powered by MXenes.