Spintronik: Mit Spannung zwischen „0“ und „1“ umschalten

Ein ferromagnetischer FeRh-Film ist auf ferroelastischem BTO mit den kristallinen Domänen a und c aufgewachsen. Bei 0 Volt zeigen XPEEM-Daten über den a-Domänen des BTO ferromagnetische Domänen im FeRh (blau-rote Muster), über den c-Domänen ist die Nettomagnetisierung im FeRh dagegen Null.  Eine Spannung von 50 Volt wandelt a-Domänen zu c-Domänen um und schaltet dadurch die ferromagnetischen Domänen im FeRh aus.

Ein ferromagnetischer FeRh-Film ist auf ferroelastischem BTO mit den kristallinen Domänen a und c aufgewachsen. Bei 0 Volt zeigen XPEEM-Daten über den a-Domänen des BTO ferromagnetische Domänen im FeRh (blau-rote Muster), über den c-Domänen ist die Nettomagnetisierung im FeRh dagegen Null. Eine Spannung von 50 Volt wandelt a-Domänen zu c-Domänen um und schaltet dadurch die ferromagnetischen Domänen im FeRh aus. © HZB

In einer Struktur aus zwei verschiedenen ferroischen Schichten hat ein Team aus Paris und dem HZB es geschafft, mit Hilfe einer Spannung magnetische Domänen an und auszuschalten. Dies gelang jetzt schon nahe der Raumtemperatur. Ihre Arbeit ist für zukünftige Anwendungen in der Spintronik interessant, zum Beispiel um Daten mit weniger Energieaufwand schnell und effizient zu speichern. Die Ergebnisse sind nun in Scientific Reports veröffentlicht.

Im digitalen Zeitalter kann Information als Folge von „Bits“ in Form der Ziffern “0” und “1“ geschrieben werden. Dabei nutzt man Materialien mit ferromagnetischen Domänen, um digitale Informationen zu verarbeiten, indem man die Magnetisierung der einzelnen Bits über magnetische Felder kontrolliert. Dies erfordert jedoch viel Energie. Jetzt hat ein Team am HZB gemeinsam mit Lee C. Phillips und Kollegen aus Frankreich einen neuen Ansatz vorgestellt, der weniger Energie erfordert: Sie kontrollieren magnetische Domänen mit Hilfe eines elektrischen Feldes.

Probe aus zwei "ferroischen" Schichten

Ihre Probe bestand aus zwei Schichten mit unterschiedlichen ferroischen Eigenschaften: auf einem ferroelastischen BaTiO3 (BTO) Substrat brachten sie einen dünnen Film aus ferromagnetischem FeRh auf. Bereits im vergangenen Jahr beobachteten sie in diesem System eine starke magnetoelektrische Kopplung zwischen beiden Schichten, die es ermöglichte, über kleine elektrische Felder am BTO-Substrat einzelne Domänen in dem FeRh-Film zu verändern.

Nun fanden sie deutlich größere Effekte: „Wir konnten über eine niedrige Spannung am BTO-Substrat die ferromagnetischen Domänen im FeRh-Film vollständig an- oder ausschalten“, erklärt Sergio Valencia, der HZB-Forscher, der die Studie geleitet hat. Mit Hilfe von XPEEM-Daten an BESSY II beobachteten sie, wie das elektrische Feld am BTO-Substrat die magnetischen Ausrichtungen im FeRh-Film beeinflusste.

Spannung, Magnetismus,Temperatur

Dies funktioniert, weil das elektrische Feld am BTO-Substrat über einen ferroelastischen Effekt bestimmte kristalline Domänen im BTO verzerrt. Diese mechanische Spannung überträgt sich auf den FeRh-Film und schaltet seine ferromagnetischen Domänen aus. Oder wie es der Physiker Valencia ausdrückt: “Durch die Verzerrung im BTO steigt die Übergangstemperatur im FeRh an, die den antiferromagnetischen Zustand (keine Netto-Magnetisierung) von dem ferromagnetischen Zustand trennt. Normalerweise liegt diese Übergangstemperatur für FeRh um die 90 °C, aber unter mechanischer Spannung steigt sie auf etwa 120 °C.“

Um diesen Effekt zu demonstrieren, führten die Wissenschaftler das Experiment bei 115 °C durch, einer Temperatur, bei der ohne Spannung im FeRh ferromagnetische Domänen vorhanden sind. Sobald die Spannung angelegt wurde, wurden diese ferromagnetischen Domänen antiferromagnetisch, d.h. die Magnetisierung verschwand.

Umschalten nahe der Raumtemperatur

“Dies ist sehr wichtig”, erklärt Valencia. „Wir haben hier eine Struktur, die wir schon in der Nähe der Raumtemperatur zwischen zwei verschiedenen magnetischen Zuständen umschalten können. Das ist genau das, was wir brauchen, um Bauteile zu entwickeln, die bei Raumtemperatur arbeiten. Zudem reicht für das Umschalten bereits ein niedriges elektrisches Feld aus, das wenig Energie benötigt. Wir arbeiten nun daran, den FeRh-Film mit Palladium-Atomen zu dotieren, um diese Effekte noch näher an der Raumtemperatur zu erzeugen.“


Zur Publikation: Scientific Reports doi:10.1038/srep10026

Local electrical control of magnetic order and orientation by ferroelastic domain  arrangements just above room temperature, L. C. Phillips, R. O. Cherifi, V. Ivanovskaya, A. Zobelli, I. C. Infante, E. Jacquet, N. Guiblin, A. A. Ünal, F. Kronast, B. Dkhil, A. Barthélémy, M. Bibes and S. Valencia

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.