New options for spintronic devices: Switching between 1 and 0 with low voltage

A thin magnetic FeRh film is grown onto a ferroelastic BTO substrate with two different crystal domains a and c. At 0 Volt ferromagnetic domains (red-blue pattern) are observed above BTO a-domains, whereas above c-domains the net magnetization is zero. At 50 Volt all BTO domains are converted into c-domains, which switches off ferromagnetic domains in FeRh.

A thin magnetic FeRh film is grown onto a ferroelastic BTO substrate with two different crystal domains a and c. At 0 Volt ferromagnetic domains (red-blue pattern) are observed above BTO a-domains, whereas above c-domains the net magnetization is zero. At 50 Volt all BTO domains are converted into c-domains, which switches off ferromagnetic domains in FeRh. © HZB

Scientists from Paris and Helmholtz-Zentrum Berlin have been able to switch ferromagnetic domains on and off with low voltage in a structure made of two different ferroic materials. The switching works slightly above room temperature. Their results, which are published online in  Scientific Reports, might inspire future applications in low-power spintronics, for instance for fast and efficient data storage.

Their sample consisted of two different ferroic layers: on a ferroelastic BaTiO3 (BTO) substrate a thin film of ferromagnetic FeRh was grown. Last year, they observed already that a small voltage across the BTO could change magnetic order in the ferromagnetic FeRh film via a strong magnetoelectric coupling between both layers.

Now, they could see much larger effects. “We could switch ferromagnetic states in the FeRh film completely on and off with a low voltage applied to the underlaying BTO”, reports Sergio Valencia, the HZB scientist who led the study. With XPEEM imaging at BESSY II they observed the transition between different magnetic orders in the FeRh layer, driven by an electrical field applied across the BTO substrate.

Electric fields, strain, magnetic order and temperature

It works because a low voltage on the BTO substrate deforms its crystal structure via a ferroelastic effect, creating a strain. This strain is transferred to the FeRh film grown on top of the BTO and influences its magnetic order. As physicist Valencia puts it: “By the strain on the BTO substrate we can increase the transition temperature of FeRh, a characteristic temperature which separates antiferromagnetic order from ferromagnetic order. Below this temperature, FeRh is antiferromagnetic (net magnetic moment is zero), above it becomes ferromagnetic. Normally this transition temperature for FeRh is around 90°C, but under strain (through the voltage applied to the BTO substrate) it is shown to rise to ca. 120 °C. To demonstrate this effect, the experiment was conducted at 115 °C, a temperature at which in absence of strain FeRh was observed to be ferromagnetic. When the voltage was applied to the BTO substrate, the strain transferred from BTO to the FeRh increased the temperature needed to have a ferromagnetic order and the FeRh became antiferromagnetic.

Switiching near room temperature

“This is quite relevant. Here we have a structure showing switching effects between two different magnetic states close to room temperature. This is precisely what you need in order to develop room temperature working devices. Moreover, to switch between these two states we use electric fields instead of magnetic fields which consumes less energy. In the near future we aim at doping the FeRh film with palladium to get effects even closer to room temperature.” Valencia says. 
 

To the article: Scientific Reports doi:10.1038/srep10026

Local electrical control of magnetic order and orientation by ferroelastic domain  arrangements just above room temperature, L. C. Phillips, R. O. Cherifi, V. Ivanovskaya, A. Zobelli, I. C. Infante, E. Jacquet, N. Guiblin, A. A. Ünal, F. Kronast, B. Dkhil, A. Barthélémy, M. Bibes and S. Valencia

arö

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.