Themen: Kooperationen (127) BESSY II (257) Nutzerforschung (27) Spintronik (90)

Science Highlight    01.07.2015

“Teufelstreppe” in einem Spin-Ventil-System

Der Durchmesser der hexagonalen Einkristalle aus SrCo6O11 misst höchstens 0,2 Millimeter.

Die Probe zeigt Plateaus in der Magnetisierung die mit unterschiedlichen Spin-Anordnungen verbunden sind.

Ein Japanisch-Deutsches Team entdeckt in einem komplexen Kobaltoxid-Einkristall an BESSY II, wie sich die Spins stufenweise zu einer ungewöhnlichen Anordnung formieren. Dies könnte neue spintronische Bauelemente ermöglichen.

Materialien mit komplexen magnetischen Strukturen gelten als interessante Kandidaten für Anwendungen in der “Spintronik”, deren Ziel es ist, mit weitaus weniger Energieeinsatz Daten zu verarbeiten oder zu speichern. Ein bekanntes Beispiel ist das so genannte “Spin-Ventil“, bei dem die Stromstärke, die durch das Element durchgelassen wird, empfindlich von der Anordnung der magnetischen Spins abhängt. In künstlichen Schichtsystemen können diese Anordnungen durch äußere magnetische Felder kontrolliert werden, was zu dem Riesenmagnetowiderstand-Effekt (Giant Magnetoresistance oder GMR) führt, für den Albert Fert und Peter Grünberg 2007 den Nobelpreis für Physik erhielten.

Kobaltoxide: magnetisch höchst komplex

Während klassische GMR-Systeme aus metallischen Schichten bestehen, die künstlich übereinander gewachsen werden, bieten oxidische Materialien eine interessante Alternative: Denn hier können  sich Schichtstrukturen mit alternierenden magnetischen Konfigurationen intrinsisch einstellen,. So weisen Kobaltoxide komplexe magnetische Ordnungen auf, die sich mit steigendem Feld verändern und sich zum Beispiel als Plateaus in der Magnetisierungskurve zeigen.

Magnetische Strukturen kartiert

Ein japanisches Team um Professor Hiroki Wadati, Universität Tokio, hat nun die magnetischen Strukturen in SrCo6O11 am Hochfeld-Diffraktometer von BESSY II charakterisiert. Wie häufig bei der Synthese neuer Materialien, mussten sie mit winzigen Einkristallen arbeiten, die Durchmesser von gerade mal 0,2 Millimetern besaßen. Durch die extrem empfindliche Methode der resonanten Röntgenstreuung, eine Spezialität der Instrumentierung an der UE46_PGM1 Beamline von BESSY II, gelang es ihnen jedoch an diesen Proben, die mit bloßem Auge kaum sichtbar sind, eine hochinteressante Beobachtung zu machen. Sie entdeckten eine “Teufelstreppe” in der Spin-Anordnung. Dieses Phänomen tritt auf, wenn sich durch einen äußeren Parameter, hier ein magnetisches Feld, unzählig viele kommensurable Überstrukturen einstellen lassen.

Teufelstreppe eröffnet neue Optionen

Dies geht weit über ein einfaches Spinventil hinaus und könnte neue Anwendungen in der Spintronik ermöglichen. An der Forschungsarbeit, die nun in Physical Review Letters publiziert ist, war auch ein Team vom Institut für Festkörper- und Werkstoffforschung in Dresden und vom HZB beteiligt.

Publikation:  T. Matsuda, S. Partzsch, T. Tsuyama, E. Schierle, E. Weschke, J. Geck, T. Saito, S. Ishiwata, Y. Tokura, and H. Wadati, "Observation of a Devil’s Staircase in the Novel Spin-Valve System SrCo6O11", Physical Review Letters 114 (236403-1-5):
doi:10.1103/PhysRevLett.114.236403.


Eugen Weschke


           



Das könnte Sie auch interessieren
  • <p>Von links nach rechts: Prof. Dr. Jan L&uuml;ning (HZB, design. GF), Dr. Roland Steitz (HZB), H.E. Dr. Khaled TOUKAN (Chairman of Jordan Atomic Energy Commission), Dr. Antje Vollmer (HZB), Mr Akram Hayjeneh (Jordan Embassy in Berlin), Dr. Samer Kahook (Manager of JRTR Jordan Atomic Energy Commission).</p>NACHRICHT      04.12.2018

    Delegation aus Jordanien zu Besuch am HZB

    Das Helmholtz-Zentrum Berlin wird die Zusammenarbeit mit jordanischen Großforschungseinrichtungen intensivieren. Das vereinbarte Prof. Dr. Jan Lüning mit Vertretern einer hochrangigen jordanischen Forschungsdelegation, die Ende November 2018 zu Gast am HZB war. [...]


  • NACHRICHT      30.11.2018

    Zwei neue Helmholtz-Nachwuchsgruppen am HZB bewilligt

    Das Helmholtz-Zentrum Berlin (HZB) baut ab 2019 zwei neue Helmholtz-Nachwuchsgruppen auf und stärkt damit die Kompetenzen in der Katalyse-Forschung. Die Helmholtz-Gemeinschaft fördert jede Gruppe jährlich mit 150.000 Euro über einen Zeitraum von fünf Jahren; hinzukommen Eigenmittel des HZB in der gleichen Höhe. [...]




Newsletter