Green solutions with diamond materials:

Sunlight activates the catalytic behavior of diamond materials, thus helping to convert carbon dioxide into fine chemicals and fuels.

Sunlight activates the catalytic behavior of diamond materials, thus helping to convert carbon dioxide into fine chemicals and fuels. © T.Petit/H.Cords/HZB

Horizon 2020 invests 3.9 million Euro in research project to convert CO2 into fuels using sunlight and diamond materials

A great new idea is now being investigated by scientists of Germany, France, England, and Sweden, among them HZB’s Prof. Emad Aziz. They propose exploring diamond materials for photocatalytic conversion of carbon dioxide into fine chemicals and fuels using visible light (DIACAT).

Their proposal was ranked top in a tough selection process within the Future Emerging Technologies (FET) Section of the European Horizon 2020 Framework Programme for Research and Innovation. It will be funded with a total budget of 3.9 million Euro, 526,000 Euro of which will be allocated to the HZB. The scientists propose to develop a novel technique for direct photocatalytic conversion of carbon dioxide into fine chemicals and fuels using visible light. Their ultimate goal is to build a functioning lab-scale device.

Diamonds and light can speed up chemical reactions

Their approach is based on a unique property of man-made diamond materials: these materials can act as a catalyst when illuminated by light. The project will be coordinated by Prof. Anke Krüger, at Julius-Maximilians-Universität Würzburg, and includes science teams from CEA (France), University of Oxford (UK), Uppsala University (Sweden), Fraunhofer Institute for Applied Solid State Physics, Ionic Liquid Technologies GmbH, and HZB in Germany.

Unique equipment at BESSY II, HZB

HZB scientist Emad Aziz has built up a research team following a Starting Grant awarded by the European Research Council in 2011. He has set up a unique instrument at HZB’s BESSY II synchrotron to analyze liquids and materials in solution and is also leading a Joint Lab at Freie Universität Berlin equipped with high-performance lasers with ultrashort pulses. “We have direct access to a multitude of experimental instruments that will enable us to investigate the physical and chemical properties of diamond materials”, he says. Postdoc Tristan Petit has brought his expertise on nanodiamonds to the HZB team: “My postdoc work was focused on nanodiamonds in solution. Now we will extend this work to bulk diamond-liquid interfaces and nanostructured diamond surfaces and see how well we can tune these materials to turn sunlight into fuel”, he explains.

Storing solar energy in chemicals

The research project will not only enhance the experimental and theoretical understanding of catalytic behavior of diamond materials, but might also result in a first device using diamond materials that demonstrates the feasibility of direct CO2 reduction using visible light. If the scientists can achieve their ambitious goals, their project might pave the way for a novel technique to store solar energy via sustainable production of fine chemicals and fuels.

arö

  • Copy link

You might also be interested in

  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.