Green solutions with diamond materials:

Sunlight activates the catalytic behavior of diamond materials, thus helping to convert carbon dioxide into fine chemicals and fuels.

Sunlight activates the catalytic behavior of diamond materials, thus helping to convert carbon dioxide into fine chemicals and fuels. © T.Petit/H.Cords/HZB

Horizon 2020 invests 3.9 million Euro in research project to convert CO2 into fuels using sunlight and diamond materials

A great new idea is now being investigated by scientists of Germany, France, England, and Sweden, among them HZB’s Prof. Emad Aziz. They propose exploring diamond materials for photocatalytic conversion of carbon dioxide into fine chemicals and fuels using visible light (DIACAT).

Their proposal was ranked top in a tough selection process within the Future Emerging Technologies (FET) Section of the European Horizon 2020 Framework Programme for Research and Innovation. It will be funded with a total budget of 3.9 million Euro, 526,000 Euro of which will be allocated to the HZB. The scientists propose to develop a novel technique for direct photocatalytic conversion of carbon dioxide into fine chemicals and fuels using visible light. Their ultimate goal is to build a functioning lab-scale device.

Diamonds and light can speed up chemical reactions

Their approach is based on a unique property of man-made diamond materials: these materials can act as a catalyst when illuminated by light. The project will be coordinated by Prof. Anke Krüger, at Julius-Maximilians-Universität Würzburg, and includes science teams from CEA (France), University of Oxford (UK), Uppsala University (Sweden), Fraunhofer Institute for Applied Solid State Physics, Ionic Liquid Technologies GmbH, and HZB in Germany.

Unique equipment at BESSY II, HZB

HZB scientist Emad Aziz has built up a research team following a Starting Grant awarded by the European Research Council in 2011. He has set up a unique instrument at HZB’s BESSY II synchrotron to analyze liquids and materials in solution and is also leading a Joint Lab at Freie Universität Berlin equipped with high-performance lasers with ultrashort pulses. “We have direct access to a multitude of experimental instruments that will enable us to investigate the physical and chemical properties of diamond materials”, he says. Postdoc Tristan Petit has brought his expertise on nanodiamonds to the HZB team: “My postdoc work was focused on nanodiamonds in solution. Now we will extend this work to bulk diamond-liquid interfaces and nanostructured diamond surfaces and see how well we can tune these materials to turn sunlight into fuel”, he explains.

Storing solar energy in chemicals

The research project will not only enhance the experimental and theoretical understanding of catalytic behavior of diamond materials, but might also result in a first device using diamond materials that demonstrates the feasibility of direct CO2 reduction using visible light. If the scientists can achieve their ambitious goals, their project might pave the way for a novel technique to store solar energy via sustainable production of fine chemicals and fuels.

arö

  • Copy link

You might also be interested in

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Helmholtz Investigator Group on magnons
    News
    24.11.2025
    Helmholtz Investigator Group on magnons
    Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.
  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).