HZB presents research on thermoelectrics

HZB Group at the ICT/ECT2015. From left to right: Dr. Klaus Habicht (Head of the Department for Methods for Characterization of Transport Phenomena in Energy Materials), Dr. Tommy Hofmann, Dr. Katharina Fritsch, Dr. Britta Willenberg, Dr. Katrin Meier-Kirchner

HZB Group at the ICT/ECT2015. From left to right: Dr. Klaus Habicht (Head of the Department for Methods for Characterization of Transport Phenomena in Energy Materials), Dr. Tommy Hofmann, Dr. Katharina Fritsch, Dr. Britta Willenberg, Dr. Katrin Meier-Kirchner

The annual "International Conference on Thermoelectrics (ICT)” and the "European Conference on Thermoelectrics (ECT)” took place together from 29 June to 02 July 2015 in Dresden, Germany. For the first time, HZB participated in this international multidisciplinary meeting. The HZB Department "Methods for Characterization of Transport Phenomena in Energy Materials" headed by Dr. Klaus Habicht presented their research in two talks and one poster.

Dr. Tommy Hofmann presented a talk on the thermoelectric properties of nanostructured silicon which is prepared at HZB by an electrochemical etching process and which is characterized in-house by macroscopic techniques, and by microscopic probes. This material is currently of great interest as silicon is earth-abundant, non-toxic and inexpensive, which distinguishes it from current thermoelectric materials such as Bi2Te3 or PbTe. The nanostructuring of this simple material offers new possibilities to increase the thermoelectric efficiency of the material, for example by reducing the thermal conductivity through the artificial creation of interfaces within the material. The thermal conductivity as macroscopic quantity relates to the transport of lattice vibrations or phonons on the microscopic level, which can be ideally studied using inelastic neutron scattering techniques available at HZB's research reactor BER II.

In the second talk, Dr. Katharina Fritsch gave an overview of the experimental methods for thermoelectrics research applied in the Department, and she presented selected ongoing research projects. Discussed projects ranged from nanostructured silicon to experiments on the lattice dynamics and electronic bandstructure of low-dimensional thermoelectric single crystals as well as structural investigations of skutterudite compounds.

The structure-functionality relationship in  skutterudite compounds were also the topic of the poster entitled "Yb-filled skutterudites: a combined macroscopic and microscopic approach", in which Dr. Britta Willenberg presented results of a project realised as cooperation between the Department and the Institute of Materials Research at the German Aerospace Center (DLR) in Cologne.

The meeting was a perfect venue to get feedback on our research projects and to present the experimental facilities and research opportunities at HZB to a large audience from Germany and abroad. Overall, we we were able to attract new potential collaboration partners.

Klaus Habicht

  • Copy link

You might also be interested in

  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).