Gerd Schneider erhält Professur für Röntgenmikroskopie an der Humboldt-Universität zu Berlin

Prof. Dr. Gerd Schneider hält die Professur für Röntgenmikroskopie an der HU Berlin inne und leitet die gleichnamige Arbeitsgruppe am HZB.

Prof. Dr. Gerd Schneider hält die Professur für Röntgenmikroskopie an der HU Berlin inne und leitet die gleichnamige Arbeitsgruppe am HZB. © WISTA MANAGEMENT GmbH

Gerd Schneider (HZB) hat den Ruf auf eine W2-S-Professur "Röntgenmikroskopie" am Institut für Physik der Humboldt-Universität zu Berlin am 29. April 2015 angenommen. Die Professur ist verbunden mit der Leitung der Arbeitsgruppe „Röntgenmikroskopie“ am Helmholtz-Zentrum Berlin für Materialien und Energie. Mit seinem Team entwickelt der international anerkannte Experte neue Methoden und Anwendungen für die Röntgenmikroskopie, die entscheidende Beiträge für viele wissenschaftlichen Disziplinen – von der Material- und Energieforschung bis hin zu den Lebenswissenschaften – liefert.

Die Arbeitsgruppe um Gerd Schneider betreibt eines der modernsten Röntgenmikroskope der Welt, das in Kombination mit dem „weichen“ Röntgenlicht  von BESSY II räumliche Auflösungen bis zu zehn Nanometern erlaubt.

Röntgenmikroskopie ist ein unerlässliches Werkzeug für die Untersuchung von Materialien

Die Röntgenmikroskopie hat gegenüber der Licht- und Elektronenmikroskopie entscheidende Vorteile: Sie ermöglicht beispielsweise, dass Forscher Strukturen von Objekten dreidimensional betrachten können, – und das bei einer sehr hohen Auflösung von 10 Nanometern. „Während Forscher im Elektronenmikroskop nur sehr dünne Probe mit maximal etwa 0,1 µm Dicke betrachten können, erlaubt die Röntgenmikroskopie beispielsweise ganze Zellen mit Dicken von 10 µm zu untersuchen. „Gegenüber der modernen Super-Resolution Lichtmikroskopie, die Farbstoffmoleküle in Zellen zur Überwindung der Auflösungsgrenze nach Abbé benötigt, liefert die Röntgenmikroskopie einen direkten Blick auf die zellulären Strukturen ohne jegliche Färbung“, erläutert Prof. Dr. Gerd Schneider. Licht- und Röntgenmikroskopie erlauben ganze Zellen zu studieren, somit können durch korrelative Untersuchungen an einzelnen Zellen mittels Lichtmikroskopie bestimmte Proteine lokalisiert werden, deren Verteilung mittels Röntgenmikroskopie in einen strukturellen zellulären Kontext gebracht werden kann.

Da jedes chemische Element spezifische Röntgenabsorptionskanten besitzt, erlaubt die Röntgenmikroskopie eine elementspezifische Bestimmung der Bestandteile einer Probe. Auch chemische Bindungszustände lassen sich durch die Nahkantenspektroskopie gut abbilden. Weil die Elemente eine charakteristische Fluoreszenz unter Röntgenlicht besitzen, kann man zudem die räumliche Verteilung extrem niedriger Konzentrationen von Elementen in einer Probe gut ermitteln. Auf diese Weise liefert die Röntgenmikrokopie ein umfassendes Bild von Proben.  

Hochpräzise Rötgenoptiken entwickeln

Um eine möglichst hohe Auflösung in der Röntgenmikroskopie zu erzielen, werden hochpräzise Optiken benötigt, die den Röntgenstrahl fokussieren. Die Arbeitsgruppe um Gerd Schneider hat neben der Entwicklung von Röntgenmikroskopen maßgeblich zur Weiterentwicklung dieser Optiken, den Fresnel-Zonenplatten, beigetragen. Mit solchen 3D-Röntgenoptiken und modernen Synchrotronquellen wie BESSY II können Beiträge zu vielen wissenschaftliche Fragestellungen von den Grundlagen der Strukturbiologie bis hin zur Forschung an modernen Energiespeichern geleistet werden.

sz

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Bernd Rech in den BR50 Vorstand gewählt
    Nachricht
    30.01.2026
    Bernd Rech in den BR50 Vorstand gewählt
    Der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin ist das neue Gesicht hinter der Unit „Naturwissenschaften“ beim Berlin Research 50 (BR50). Nach der Wahl im Dezember 2025 fand am 22. Januar 2026 die konstituierende Sitzung des neuen BR50-Vorstands statt.  Mitglieder sind Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (Deutsches Zentrum für Integrations- und Migrationsforschung, DeZIM), Volker Haucke (Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP), Uta Bielfeldt (Deutsches Rheuma-Forschungszentrum Berlin, DRFZ) und Bernd Rech (HZB).
  • KI analysiert Dinosaurier-Fußabdrücke neu
    Science Highlight
    27.01.2026
    KI analysiert Dinosaurier-Fußabdrücke neu
    Seit Jahrzehnten rätseln Paläontolog*innen über geheimnisvolle dreizehige Dinosaurier-Fußabdrücke. Stammen sie von wilden Fleischfressern, sanften Pflanzenfressern oder sogar frühen Vögeln? Nun hat ein internationales Team künstliche Intelligenz eingesetzt, um dieses Problem anzugehen – und eine kostenlose App entwickelt, die es jeder und jedem ermöglicht, die Vergangenheit zu entschlüsseln.