Inhomogene Chlorverteilung in Perowskit-Schichten

Experimente an BESSY II zeigten, dass die Konzentration von Chlor an der Grenzfl&auml;che Perowskit/TiO<sub>2</sub> h&ouml;her ist als in der restlichen Schicht.

Experimente an BESSY II zeigten, dass die Konzentration von Chlor an der Grenzfläche Perowskit/TiO2 höher ist als in der restlichen Schicht. © D. Starr/HZB

Mit verschiedenen röntgenspektroskopischen Experimenten an BESSY II zeigte ein HZB-Team, dass sich Chlor in einer bestimmten Klasse von Perowskiten sehr ungleichmäßig verteilt: während an der Oberfläche Chlor nicht nachweisbar ist, findet man in tieferen Lagen, insbesondere an der Grenzfläche zum Substrat, eine signifikante Chlorkonzentration. Die Ergebnisse könnten Wege aufzeigen, bei der Herstellung der Schichten die Verteilung der Chloratome zu kontrollieren und dadurch die Effizienz von Perowskit-Dünnschicht-Solarzellen weiter zu steigern.

Seit 2012 in rascher Folge immer neue Wirkungsgradrekorde vermeldet wurden, zählen organisch-anorganische Perowskitmaterialien zu den interessantesten neuen Materialklassen für Solarzellen. Gerade die organometallischen Halogenid-Perowskite sind kostengünstig, einfach zu verarbeiten und haben bereits Wirkungsgrade bis zu 20,1 % erzielt. Zu den Pionieren auf diesem Gebiet zählt die Gruppe um Henry Snaith an der University of Oxford, England.

Chlor scheint einfach zu verschwinden

Die beste Leistung zeigten bislang Perowskit-Schichten aus einer Lösung von Blei-Methylammonium und den Halogeniden Iod und Chlor. Doch obwohl in den Ausgangsprodukten das Mischungsverhältnis zwischen Chlor und Iod etwa 2/3 beträgt, enthalten die fertigen Perowskit-Schichten fast gar kein Chlor, sondern nur noch Iod. Dabei scheint ein gewisser Chloranteil im Material sich auf die Effizienz günstig auszuwirken.

Chlorgehalt in tieferen Schichten analysiert

Nun hat ein Team am HZB Proben aus der Gruppe um Henry Snaith eingehend analysiert und aufgedeckt, wo Chlor in der Perowskit-Schicht bleibt und wo es verschwindet. Um die Verteilung von Chlor in verschiedenen Schichttiefen der Perowskit-Proben zu untersuchen, nutzten sie zwei Röntgen-Spektroskopie-Methoden an BESSY II. Mittels Hart-Röntgen-Photoelektronenspektroskopie (HAXPES) an der KMC-1 Beamline analysierten sie die Oberflächen der Perowskit-Proben und konnten dort keine Chloratome nachweisen. Die tieferen Schichten der Probe untersuchten sie mit Fluoreszenz-Röntgen-Absorptionsspektroskopie (FY-XAS): „Nahe der Grenzfläche zwischen Perowskit und dem Titandioxidsubstrat konnten wir eine höhere Konzentration von Chlor nachweisen als in der Perowskit-Schicht selbst“, erklärt Dr. David Starr, Erstautor der Publikation in Energy & Environmental Science.

Chlor steigert den Wirkungsgrad

Warum Chlor den Wirkungsgrad günstig beeinflusst, ist noch nicht ganz klar; möglicherweise mindert es die Auswirkungen von Fehlstellen und erhöht somit die Qualität der Perowskit-Schicht. „Diese Ergebnisse werden uns vielleicht zeigen, wie man bei der Herstellung die Verteilung von Chlor besser kontrollieren kann“, sagt Prof. Dr. Marcus Bär, der das HZB-Team leitet. „Das Ziel ist, die Materialzusammensetzung und Deposition gezielt zu steuern, um spezifische, gewünschte Eigenschaften zu erhalten. Wenn wir die nützliche Rolle von Chlor in Blei-haltigen Perowskiten besser verstehen, können wir vielleicht in weiteren Schritten auch das Blei durch weniger toxische Elemente ersetzen.“

Zur Publikation: Energy Environ. Sci., 2015, 8, 1609, DOI: 10.1039/c5ee00403a
Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3_xClx layers: surface depletion and interface enrichment. David E. Starr, Golnaz Sadoughi, Evelyn Handick, Regan G. Wilks, Jan H. Alsmeier, Leonard Köhler, Mihaela Gorgoi, Henry J. Snaith and Marcus Bär

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.
  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.