Spins in Graphen: ausgerichtet wie die Stachelns eines Igels

Die Illustration zeigt, wie sich an den Energieflächen der Elektronen im reziproken Raum die Spins aus der Ebene herausdrehen. Dabei bildet sich eine Konfiguration, die an die Stacheln eines Igels erinnert. Illustration Thomas Splettstößer/HZB

Die Illustration zeigt, wie sich an den Energieflächen der Elektronen im reziproken Raum die Spins aus der Ebene herausdrehen. Dabei bildet sich eine Konfiguration, die an die Stacheln eines Igels erinnert. Illustration Thomas Splettstößer/HZB

HZB-Team weist fundamentale Eigenschaft des Elektronenspins in Graphen nach

Seit geraumer Zeit experimentieren HZB-Forscher mit Graphen, einem Material, das für seine besonders leicht beweglichen Elektronen berühmt ist. Sie wollen diesem Material eine weitere Eigenschaft aufprägen. Dabei handelt es sich um eine Kopplung zwischen der Bewegungsrichtung dieser Elektronen und ihrem Eigendrehimpuls, dem Spin. Die Spineigenschaft ist eine Spezialität schwerer Elemente, wie beispielsweise Gold. Graphen besteht aus Kohlenstoff und ist dafür zu leicht. Jedoch beherrscht man am HZB die Methode, Gold kontrolliert unter eine Graphen-Lage zu schieben. So können in der Tat bestimmte Spinmuster erzeugt werden, die als Rashba-Effekt bekannt wurden, bislang gelang das allerdings nur in der Ebene des Graphen.Nun ist es Dr. Andrei Varykhalov und Mitarbeitern gelungen, den Spin auch aus der Ebene herauszudrehen.

Dabei drehen sich die Spins kontinuierlich von der Ebene in die Senkrechte, eine Ausrichtung wie bei den Stacheln eines Igels. Das konnten die Forscher mit spinaufgelöster Photoemissionsspektroskopie an BESSY II nachweisen.

Igel und Anti-Igel

Tatsächlich sind solche Igel-Strukturen beispielsweise aus der Kernphysik bekannt. Es sind ganz singuläre Punkte, die eigentlich dem Verbot magnetischer Monopole nach Gauss widersprechen würden. Hier wirft Varykhalov jedoch ein, dass im Graphen alles zweifach vorhanden ist, da seine Bienenwabenstruktur aus zwei äquivalenten Atomgittern zusammengesetzt ist. Tatsächlich gibt es zu dem Igel auch eine Art Anti-Igel, die zusammen dem Monopol-Verbot Genüge tun.

Design eines Spinfilters

Dass sich die Igel aufheben, bedeutet jedoch nicht, dass sie keine physikalische Auswirkungen hätten, ganz im Gegenteil, erklärt Prof. Dr. Oliver Rader, der Leiter der Abteilung. Die Physiker haben nämlich in ihrer Arbeit ein spintronisches Bauteil vorgeschlagen, das die Igelstruktur ausnutzt, um einen sehr effizienten Spinfilter zu realisieren. Im Spinfilter werden die Spins nach rechts bzw. links abgelenkt, der resultierende Spinstrom ist prinzipiell verlustlos und könnte in der Zukunft den Energieverbrauch in der Informationstechnologie reduzieren.

Sichtbar erst durch ein Substratkristall

Der Effekt im Graphen ist vor einigen Jahren von einer Gruppe aus Budapest vorhergesagt worden. Andros Kormányos erklärt, dass der Igel und der Anti-Igel auch bei den Vorläufersystemen schon angelegt waren, jedoch einander untrennbar überlagert. Erst durch Brechung der Untergittersymmetrie, die Varykhalov durch Wahl eines Substratkristalls mit einer niedrigeren Symmetrie bewerkstelligt hat, konnte er den Igel und den Anti-Igel voneinander trennen.

Die Arbeit ist in der renommierten Zeitschrift Nature Communications am 27. Juli 2015 veröffentlicht. Die zugrundeliegende Vorhersage [1] war im Jahre 2011 bei Physical Review B erschienen.

Zur Publikation: A. Varykhalov, J. Sánchez-Barriga, D. Marchenko, P. Hlawenka, P.S. Mandal & O. Rader,
Tunable Fermi level and hedgehog spin texture in gapped graphene
NATURE COMMUNICATIONS | 6:7610 | DOI: 10.1038/ncomms8610 

[1] A. Varykhalov, J. Sánchez-Barriga, D. Marchenko, P. Hlawenka, P.S. Mandal & O. Rader,
Tunable Fermi level and hedgehog spin texture in gapped graphene
NATURE COMMUNICATIONS | 6:7610 | DOI: 10.1038/ncomms8610

[2] Rakyta, P., Kormányos, A. & Cserti, J. Effect of sublattice asymmetry and
spin-orbit interaction on out-of-plane spin polarization of photoelectrons.
Phys. Rev. B 83, 155439 (2011).

Oliver Rader

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.