Spins in Graphene with a Hedgehog Texture

The hedgehog-configuration of the spins and the Fermi-Level is shown. Illustration Thomas Splettstößer/HZB

The hedgehog-configuration of the spins and the Fermi-Level is shown. Illustration Thomas Splettstößer/HZB

HZB researchers demonstrate a fundamental property of the electron spin in graphene

HZB researchers have been experimenting for quite some time with graphene, a material famous for its highly mobile electrons. They intend to impose an additional property on the graphene. This property is a coupling between the direction of motion of these electrons and their angular momentum, in other words: their spin. This is, however, an exclusive property of heavy elements, for example gold. Graphene consists of carbon and is too light to this end. HZB researchers, however, are experts in depositing gold atoms underneath a graphene layer in a controlled way. In this way, one can indeed create peculiar spin textures which have become known as the "Rashba effect". Nevertheless, only spin textures within the graphene plane had been possible. Now Dr. Andrei Varykhalov and co-workers succeeded to turn the spin also out of the plane.

They achieve this by turning it successively out of the plane towards the surface normal, an arrangement as with the spikes of a hedgehog. The researchers verified this with spin-resolved photoelectron spectroscopy at BESSY II.

Indeed, such hedgehog structures are known, for example in nuclear physics. These are singular points which, in principle, would contradict the prohibition of magnetic monopoles, according to Gauss. Here, Varykhalov remarks that in graphene, everything is doubled because its honeycomb-type crystal structure consists of two equivalent atomic lattices. Indeed, also the hedgehog has a kind of anti-hedgehog, and both together comply with the monopole prohibition.

That both hedgehogs cancel each other does not mean that they do not have physical consequences, on the contrary, explains Prof. Oliver Rader, the head of the department. In fact, the physicists suggested in their study a spintronic device which uses the hedgehog structure to realize a very efficient spin filter. In the spin filter, the spins are deflected to the left and right, respectively. The resulting spin current is in principle lossless and could in the future reduce the energy consumption in the information technology.


The effect in the graphene has a couple of years ago been predicted by a group from Budapest. Andros Kormányos explains that the hedgehog and the anti-hedgehog had already been present in the previously realized graphene systems. However, they were inseparably superimposed. Only by breaking of the sublattice symmetry, which Varykhalov achieved by chosing a substrate crystal of a lower symmetry, the hedgehog could be separated from the anti-hedgehog.


The study is published by the renowned journal Nature Communications (27. July 2015). The underlying prediction appeared in 2011 in Phyisical Review B.

Publication: A. Varykhalov, J. Sánchez-Barriga, D. Marchenko, P. Hlawenka, P.S. Mandal & O. Rader,
Tunable Fermi level and hedgehog spin texture in gapped graphene
NATURE COMMUNICATIONS | 6:7610 | DOI: 10.1038/ncomms8610 

Rakyta, P., Kormányos, A. & Cserti, J. Effect of sublattice asymmetry and
spin-orbit interaction on out-of-plane spin polarization of photoelectrons.
Phys. Rev. B 83, 155439 (2011)

Oliver Rader

  • Copy link

You might also be interested in

  • Technology Transfer Prize Ceremony 2025
    News
    07.10.2025
    Technology Transfer Prize Ceremony 2025
    This year’s Technology Transfer Prize Ceremony will take place on October 13 at 2 pm in the Lecture Hall, BESSY II Building, Adlershof.
  • Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Science Highlight
    01.10.2025
    Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Researchers have for the first time measured the true properties of individual MXene flakes — an exciting new nanomaterial with potential for better batteries, flexible electronics, and clean energy devices. By using a novel light-based technique called spectroscopic micro-ellipsometry, they discovered how MXenes behave at the single-flake level, revealing changes in conductivity and optical response that were previously hidden when studying only stacked layers. This breakthrough provides the fundamental knowledge and tools needed to design smarter, more efficient technologies powered by MXenes. 
  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.