Helmholtz investiert 46 Mio. Euro in neue Labor-Plattform

Sechs Helmholtz-Zentren richten eine gemeinsame Infrastruktur für die Entwicklung neuartiger Energiematerialien ein, die auch externen Nutzergruppen zur Verfügung steht.

Der Helmholtz-Senat hat den Aufbau einer groß angelegten Infrastruktur für die Synthese und Entwicklung neuartiger Materialsysteme zur Energieumwandlung und  -speicherung beschlossen. Das Gesamtvolumen beträgt rund 46 Mio. Euro (2016 -2020).

Die Einrichtung der Helmholtz Energy Materials Foundry (HEMF) wird vom Helmholtz-Zentrum Berlin koordiniert, fünf weitere Helmholtz-Zentren beteiligen sich an Konzeption und Aufbau: Das Deutsche Zentrum für Luft- und Raumfahrt (DLR), Forschungszentrum Jülich, Helmholtz-Zentrum Geesthacht (HZG), Helmholtz-Zentrum Dresden-Rossendorf (HZDR) sowie das Karlsruher Institut für Technologie (KIT). Die Plattform HEMF soll auch externen Nutzergruppen aus Universitäten und außeruniversitären Instituten aus dem In- und Ausland sowie der Industrie zur Verfügung stehen.

Im Rahmen von HEMF werden an den sechs beteiligten Helmholtz-Zentren mehrere, sich ergänzende Laboratorien mit hervorragender und einzigartiger Ausstattung aufgebaut. Der wissenschaftliche Fokus beim Maßschneidern von Energiematerialien liegt dabei auf Fragestellungen mit Bezug zu solaren Brennstoffen, Solarzellen, Brennstoffzellen, Batteriesystemen sowie thermoelektrischen und thermochemischen Materialien. Ein übergreifendes Thema sind neuartige Katalysatoren, die bei der Energieumwandlung und -speicherung eingesetzt werden.

Das Leistungsspektrum der HEMF-Plattform reicht vom Design neuartiger Materialsysteme über in-situ und in-operando Analysen von Prozessen bei ihrer Synthese bis zur dreidimensionalen  Nanostrukturierung dieser Materialien, um ihre Eigenschaften gezielt zu verändern. Außerdem werden neue Methoden entwickelt, um neuartige Materialien zu verarbeiten, innovative  Prototypen für bestimmte Anwendungen herzustellen und ihre Eigenschaften und Leistungsfähigkeit unter Dauerbelastung zu untersuchen. „Dieser ganzheitliche Ansatz, ermöglicht effiziente Feedback-Schleifen zwischen Synthese, Charakterisierung und der Evaluation der Endprodukte. Damit beschleunigen wir die wissensbasierte Entwicklung“, sagt Prof. Anke Kaysser-Pyzalla, wissenschaftliche Geschäftsführerin des HZB.

Am HZB sind insbesondere Synthese-Laboratorien für Perowskit-Dünnschichten, Nanopartikel für Katalyse und elektrochemische Speicher sowie Einrichtungen für die Nanostrukturierung von Materialien geplant. Am neu errichteten Energy Materials In situ Laboratory (EMIL) an BESSY II werden neue Methoden entwickelt, um elektrochemische Prozesse an katalytischen und heterogenen Grenzflächen zu untersuchen. Darüber hinaus werden auch Test-Labore eingerichtet, um neue Materialsysteme unter realen Bedingungen zu prüfen.  Das HZB arbeitet dafür auch mit der Max-Planck-Gesellschaft zusammen, die durch das Fritz-Haber-Institut, Berlin, und dem MPI für Chemische Energiekonversion (CEC) in Mülheim vertreten ist.

Die HEMF-Plattform wird als internationale Nutzereinrichtung betrieben. Die Laboratorien stehen damit auch Forschergruppen aus Universitäten, außeruniversitären Forschungseinrichtungen oder der Industrie zur Verfügung. Die Koordination des  Nutzerbetriebs übernimmt  das HZB, das auf diesem Gebiet über große Erfahrung verfügt und bei seinen eigenen Großgeräten, BESSY II und BER II, einen hervorragenden Nutzerservice aufgebaut hat, von dem jährlich rund 3000 externe Messgäste profitieren. HEMF baut auch auf einem Konzept des kalifornischen Berkeley Labs auf, wo eine „Molecular Foundry“ als Infrastruktur für internationale Nutzergruppen eingerichtet wurde.

“Mit der HEMF-Plattform verstärkt die Helmholtz-Gemeinschaft ihre Kompetenzen in der Materialsynthese von Werkstoffen, die für die Energiewende unverzichtbar sind. Mit dieser  gemeinsamen Infrastruktur können die beteiligten Helmholtz-Zentren ihr Forschungspotenzial einbringen, damit wir in Zukunft die Energie, die wir brauchen, sicher und zugleich umweltfreundlich zur Verfügung stellen und nutzen können. Die Plattform wird zugleich neue attraktive Kooperationspartner anziehen, die die gleichen Forschungsziele verfolgen“, führt Anke Kaysser-Pyzalla weiter aus. Das Vorhaben ist in dieser Größenordnung einzigartig und wird dazu beitragen, dass die Gruppe der Helmholtz-Zentren bei der Erforschung und Entwicklung von neuen Energiematerialien auch  im internationalen Vergleich einen wegweisenden Beitrag leisten kann.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.