Ultradünne Wasserfilme zum Fließen gebracht - Ein Flachstrahl für Röntgenspektroskopie
Flachstrahlsystem für Flüssigkeiten mit den beiden Düsen, den beiden kollidierenden laminaren Flüssigkeitsstrahlen und dem blattförmigen Wasserfilm. © MBI
Teams des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), des HZB und des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) haben ein neuartiges Flachstrahlsystem für Transmissionsmessungen flüssiger Proben im weichen Röntgenbereich entwickelt. Dies bedeutet einen wichtigen Fortschritt für die Spektroskopie flüssiger Proben mit weicher Röntgenstrahlung und ebnet den Weg für neuartige stationäre und zeitaufgelöste Experimente.
Dabei wurde ein Phänomen aus der Fluiddynamik ausgenutzt: Wenn sich zwei identische laminare Flüssigkeitsstrahlen unter einem wohldefinierten Winkel treffen, breitet sich die Flüssigkeit radial aus, was zur Ausbildung eines dünnen blattförmigen Flüssigkeitsfilm senkrecht zur Ebene der beiden Strahlen führt. Dieser Film wird durch eine ebenfalls aus der Flüssigkeit gebildeten Randlippe stabilisiert.
Die Innovation besteht hier darin, dass ein über Stunden stabiler Flachstrahl im Vakuum (bei Drücken kleiner als 10-3 mbar) mit einer Dicke von einem bis zwei Mikrometer realisiert wurde. Erstmalig konnten damit Absorptionsspektren flüssiger Proben in Transmission mit Photonenenergien im Weichröntgenbereich und völlig ohne Membran-basierte Fenster gemessen werden.
Die röntgenspektroskopischen Messungen wurden an BESSYII des HZB durchgeführt.
Lesen Sie hier den kompletten Text aus dem MBI.
Originalpublikation: Structural Dynamics 2, 054301 (2015): A liquid flatjet system for solution phase soft-x-ray spectroscopy
Maria Ekimova, Wilson Quevedo, Manfred Faubel, Philippe Wernet, Erik T.J. Nibbering
Max-Born-Institut/red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14315;sprache=dehttp://
- Link kopieren
-
MXene als Energiespeicher: Vielseitiger als gedacht
MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
-
KI analysiert Dinosaurier-Fußabdrücke neu
Seit Jahrzehnten rätseln Paläontolog*innen über geheimnisvolle dreizehige Dinosaurier-Fußabdrücke. Stammen sie von wilden Fleischfressern, sanften Pflanzenfressern oder sogar frühen Vögeln? Nun hat ein internationales Team künstliche Intelligenz eingesetzt, um dieses Problem anzugehen – und eine kostenlose App entwickelt, die es jeder und jedem ermöglicht, die Vergangenheit zu entschlüsseln.
-
Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen.