Uppsala Berlin Joint Laboratory “Our willingness to cooperate is our strength”

Great political interest for the new Uppsala Berlin Joint Laboratory (UBjL): On the 4th of November, Sweden’s ambassador in Germany, Dr. Lars Danielsson, came personally to the HZB where the UBjL is established for the inauguration of the joint project.

“Many parts of the world are currently regarded as more dynamic than Europe,” Dr. Danielsson said in his opening speech: “But we have great strengths – namely our skill and our willingness to cooperate.” These strengths, the ambassador continued, can be seen clearly in the UBjL: “Such excellent joint research projects lead to results that will bring great benefits to society, our children and our grandchildren.” Dr. Danielsson then gave the symbolic start signal for two experimental stations that will be supervised by the Swedish-German workgroup belonging to the UBjL.
 
The “Uppsala Berlin Joint Laboratory” is headed by Professor Nils Mårtensson, University of Uppsala, and Professor Alexander Föhlisch, Head of the HZB Institute “Methods and Instrumentation for Synchrotron Radiation Research. “We are very proud that Professor Mårtensson has invested resources from this ERC Advanced Grant in the UBjL,” HZB Scientific Director Prof. Dr. Anke Kaysser-Pyzalla said at the opening. This funding, co-financed by the HZB, has allowed the development of worldwide unique study methods for functional materials.

These methods are based on angle-resolved time-of-flight electron spectroscopy (ARTOF) and MHz pulse extraction at BESSY II. The ARTOF instruments were developed in Sweden by the University of Uppsala and the company Scienta-Omicron in close collaboration with the HZB. “The synchrotron source BESSY II delivers pulses with the most suitable time structure worldwide for optimally using the instruments,” said Svante Professor Svante Svensson, who is part of the UBjL team at BESSY II in Berlin. At the UBjL, the researchers can study the state of functional materials at the lowest possible X-ray dosage. Further methods allow detailed detection of the electronic structure of materials.

  • Copy link

You might also be interested in

  • Industrial Research Fellow at HZB: More time for discussions
    Interview
    12.05.2025
    Industrial Research Fellow at HZB: More time for discussions
    The South African chemist Denzil Moodley is the first Industrial Research Fellow at HZB. He is playing a leading role in the CARE-O-SENE project. The Fellowship program aims to further accelerate the development of an efficient catalyst for a sustainable aviation fuel. An interview about the CARE-O-SENE project and why it is so important for scientists from industry and public research to work together.
  • Perovskites: Hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Perovskites: Hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.