Uppsala Berlin Joint Laboratory “Our willingness to cooperate is our strength”

Great political interest for the new Uppsala Berlin Joint Laboratory (UBjL): On the 4th of November, Sweden’s ambassador in Germany, Dr. Lars Danielsson, came personally to the HZB where the UBjL is established for the inauguration of the joint project.

“Many parts of the world are currently regarded as more dynamic than Europe,” Dr. Danielsson said in his opening speech: “But we have great strengths – namely our skill and our willingness to cooperate.” These strengths, the ambassador continued, can be seen clearly in the UBjL: “Such excellent joint research projects lead to results that will bring great benefits to society, our children and our grandchildren.” Dr. Danielsson then gave the symbolic start signal for two experimental stations that will be supervised by the Swedish-German workgroup belonging to the UBjL.
The “Uppsala Berlin Joint Laboratory” is headed by Professor Nils Mårtensson, University of Uppsala, and Professor Alexander Föhlisch, Head of the HZB Institute “Methods and Instrumentation for Synchrotron Radiation Research. “We are very proud that Professor Mårtensson has invested resources from this ERC Advanced Grant in the UBjL,” HZB Scientific Director Prof. Dr. Anke Kaysser-Pyzalla said at the opening. This funding, co-financed by the HZB, has allowed the development of worldwide unique study methods for functional materials.

These methods are based on angle-resolved time-of-flight electron spectroscopy (ARTOF) and MHz pulse extraction at BESSY II. The ARTOF instruments were developed in Sweden by the University of Uppsala and the company Scienta-Omicron in close collaboration with the HZB. “The synchrotron source BESSY II delivers pulses with the most suitable time structure worldwide for optimally using the instruments,” said Svante Professor Svante Svensson, who is part of the UBjL team at BESSY II in Berlin. At the UBjL, the researchers can study the state of functional materials at the lowest possible X-ray dosage. Further methods allow detailed detection of the electronic structure of materials.

You might also be interested in

  • Unconventional piezoelectricity in ferroelectric hafnia
    Science Highlight
    Unconventional piezoelectricity in ferroelectric hafnia
    Hafnium oxide thin films are a fascinating class of materials with robust ferroelectric properties in the nanometre range. While their ferroelectric behaviour is extensively studied, results on piezoelectric effects have so far remained mysterious. A new study now shows that the piezoelectricity in ferroelectric Hf0.5Zr0.5O2 thin films can be dynamically changed by electric field cycling. Another ground-breaking result is a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound. These unconventional features in hafnia offer new options for use in microelectronics and information technology.
  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Sodium-ion batteries: How doping works
    Science Highlight
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.