Uppsala Berlin Joint Laboratory “Our willingness to cooperate is our strength”

Great political interest for the new Uppsala Berlin Joint Laboratory (UBjL): On the 4th of November, Sweden’s ambassador in Germany, Dr. Lars Danielsson, came personally to the HZB where the UBjL is established for the inauguration of the joint project.

“Many parts of the world are currently regarded as more dynamic than Europe,” Dr. Danielsson said in his opening speech: “But we have great strengths – namely our skill and our willingness to cooperate.” These strengths, the ambassador continued, can be seen clearly in the UBjL: “Such excellent joint research projects lead to results that will bring great benefits to society, our children and our grandchildren.” Dr. Danielsson then gave the symbolic start signal for two experimental stations that will be supervised by the Swedish-German workgroup belonging to the UBjL.
The “Uppsala Berlin Joint Laboratory” is headed by Professor Nils Mårtensson, University of Uppsala, and Professor Alexander Föhlisch, Head of the HZB Institute “Methods and Instrumentation for Synchrotron Radiation Research. “We are very proud that Professor Mårtensson has invested resources from this ERC Advanced Grant in the UBjL,” HZB Scientific Director Prof. Dr. Anke Kaysser-Pyzalla said at the opening. This funding, co-financed by the HZB, has allowed the development of worldwide unique study methods for functional materials.

These methods are based on angle-resolved time-of-flight electron spectroscopy (ARTOF) and MHz pulse extraction at BESSY II. The ARTOF instruments were developed in Sweden by the University of Uppsala and the company Scienta-Omicron in close collaboration with the HZB. “The synchrotron source BESSY II delivers pulses with the most suitable time structure worldwide for optimally using the instruments,” said Svante Professor Svante Svensson, who is part of the UBjL team at BESSY II in Berlin. At the UBjL, the researchers can study the state of functional materials at the lowest possible X-ray dosage. Further methods allow detailed detection of the electronic structure of materials.

You might also be interested in

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    Der 2. Netzwerktag der Allianz BIPV findet statt am

    10:00 - ca. 16:00 Uhr

    Das HZB, Mitglied in der Allianz BIPV, freut sich, Gastgeber des branchenweiten Austausches zu sein. Neben Praxiserfahrungen von Vertretenden aus Architektur, Fassadenbau und angewandter Forschung steht der direkte Austausch und die Diskussion im Vordergrund.

  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.