BESSY II mit zweiter Spur

Das Bild veranschaulicht am Beispiel einer Autobahn, wie sich die zweite Spur um die erste Spur herumwindet.  Die Experimentatoren an den Beamlines könnten dann zukünftig entweder die dichte Folge von Lichtblitzen der ersten Spur nutzen oder aber die einzelnen Lichtblitze der zweiten Spur auswählen.

Das Bild veranschaulicht am Beispiel einer Autobahn, wie sich die zweite Spur um die erste Spur herumwindet. Die Experimentatoren an den Beamlines könnten dann zukünftig entweder die dichte Folge von Lichtblitzen der ersten Spur nutzen oder aber die einzelnen Lichtblitze der zweiten Spur auswählen. © Heike Cords/HZB

Der Berliner Elektronenspeicherring BESSY II lässt sich auch zweispurig betreiben, zeigte das Beschleuniger-Team am Helmholtz-Zentrum Berlin (HZB): Durch raffinierte Einstellungen an den Magnetoptiken können die Physiker eine zweite Spur erzeugen, auf der zusätzliche Elektronenpakete zirkulieren und Lichtblitze an die Experimentierstationen abgeben. Die Nutzergemeinschaft könnte so in Zukunft nach Bedarf entweder Lichtblitze der einen oder der anderen Spur für ihr Experiment auswählen. Der neu entwickelte Modus konnte bereits stabil eingestellt werden und  erste Tests an Experimentierstationen zeigen vielversprechende Resultate. Damit hat das HZB weltweit Neuland betreten und zugleich einen weiteren Meilenstein in Richtung des Zukunftsprojektes BESSY-VSR erreicht.

Stark vereinfacht könnte man die Elektronenbahnen in BESSY II mit einer Autobahn vergleichen, die bislang nur eine Spur hatte: Die Elektronenpakete im Speicherring entsprächen in diesem Bild Autokolonnen, die auf dieser Spur im Kreis fahren und an bestimmten Stellen ihre „Scheinwerfer“ aufblenden, um die Experimente an den Beamlines mit Lichtblitzen zu versorgen. Nun hat ein Team aus dem HZB-Institut für Beschleunigerphysik eine „zweite Spur“ erzeugt, auf der einzelne Elektronenpakete zirkulieren.

Perfekte Kontrolle

Durch besondere Einstellungen der Magnetoptik bildet sich neben der ersten stabilen Umlaufbahn im Speicherring eine zweite Spur aus, die sich um die erste Umlaufbahn herumwindet. „Wir können die Elektronenpakete dabei sehr gut kontrollieren und auf beiden Spuren quasi beliebige Füllmuster realisieren“, sagt Prof. Dr. Andreas Jankowiak, der das HZB-Institut für Beschleunigerphysik leitet. Als Füllmuster bezeichnen die Physiker die Anordnungen und Abstände zwischen den Elektronenpaketen; um im Bild der Autobahn zu bleiben, könnte ein Füllmuster zum Beispiel aus Wagenkolonnen oder aus einzelnen Autos in bestimmten Abständen bestehen.

Lichtpulse mit Pausen - ganz nach Bedarf

Perspektivisch wird diese Entwicklung das Angebot von BESSY II für die Nutzergemeinschaft deutlich erweitern, denn es gibt bereits heute schon etablierte Verfahren, um gezielt einzelne Lichtblitze auszuwählen. So könnte man mit der neuen Methode die Hauptspur mit Gruppen von Elektronenpaketen besetzen, die Lichtblitze in rascher Folge produzieren, während man auf der Zweitspur einzelne Elektronenpakete platzieren könnte; diese würden dann Lichtblitze mit Pausen erzeugen, was für manche Experimente ideal ist. 

Ausblick BESSY-VSR

Andreas Jankowiak ergänzt: „Diese Entwicklung nützt uns unmittelbar auch für unser Upgrade-Projekt BESSY-VSR, dem Variablen Speicherring. Damit wollen wir künftig sowohl ultrakurze als auch längere Lichtblitze erzeugen, die man dann auf unterschiedliche Spuren setzen könnte“.

Zur Publikation auf der IPAC 2015: 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.