Alternative Methode, um Mikrostrukturen in Polykristallen darzustellen

Wie sich die Kristallite in einer CuInSe<sub>2</sub>-D&uuml;nnschicht orientieren, l&auml;sst sich auch mit Raman-Mikrospektroskopie kartieren.

Wie sich die Kristallite in einer CuInSe2-Dünnschicht orientieren, lässt sich auch mit Raman-Mikrospektroskopie kartieren. © HZB

Der gleiche Ausschnitt dieser Probe mit EBSD kartiert.

Der gleiche Ausschnitt dieser Probe mit EBSD kartiert. © HZB

Auch mit Raman-Mikrospektroskopie  lässt sich ermitteln, wie Kristallorientierungen in polykristallinen Materialien über größere Bereiche verteilt sind. Dieses Verfahren kann als Alternative zur Rückstreuelektronenbeugung im Rasterelektronenmikroskop herangezogen werden. Dass beide Verfahren auf Flächen von mehreren hundert Quadratmikrometern zu vergleichbaren Ergebnissen führen, hat nun ein Team aus dem Helmholtz-Zentrum Berlin und der Bundesanstalt für Materialforschung (BAM) demonstriert.

Die meisten festen Materialien liegen als Polykristalle vor. Wie sich diese Mikrokristalle in der Probe orientieren, kann für die Eigenschaften des Materials sehr wichtig sein. Um die Orientierungsverteilung über einen größeren Probenausschnitt zu bestimmen, ist in der Regel ein Rasterelektronenmikroskop erforderlich. Nach aufwändiger Vorbehandlung wird die Probe im Vakuum mit einem Elektronenstrahl abgetastet und mittels Rückstreuelektronenbeugung (electron backscatter diffraction, kurz EBSD) untersucht.

Alternative Methode: weniger Aufwand

Nun hat ein Team aus dem HZB um Dr. Daniel Abou-Ras zusammen mit Dr. Thomas Schmid von der BAM gezeigt, dass vergleichbare Verteilungsbilder auch mit Raman-Mikrospektroskopie gelingen. Diese Methode erfordert  lediglich einen optischen Mikroskopieaufbau, benötigt keine aufwändige Probenpräparation und kann auch auf Materialsysteme angewandt werden, die nicht vakuumtauglich sind.

Großer Ausschnitt untersucht

Als Modellsystem untersuchten die Wissenschaftler eine polykristalline CuInSe2-Dünnschicht mit beiden Methoden. Dabei konnten sie zeigen, dass die experimentell ermittelten Raman-Intensitäten über einem ausgewählten Flächenausschnitt sehr gut mit den - unter Verwendung der lokalen Orientierungen - aus der EBSD-Map berechneten Raman-Intensitäten übereinstimmten. „Die Probe wurde mit Schrittweiten von 200 Nanometern mit einem Laserstrahl abgetastet und die Raman-Signale gemessen. Um diese Messung auf Flächen von mehreren hundert Quadratmikrometern durchzuführen, mussten wir allerdings die Probenumgebung sehr sorgfältig kontrollieren und über Stunden stabil halten“, erklärt Abou-Ras.

Anwendbar für viele polykristalline Proben

Die Anwendung der Raman-Mikrospektroskopie für Orientierungsverteilungen ist prinzipiell für alle polykristallinen Proben möglich, ob anorganisch oder organisch, solange diese Raman-aktiv sind.

Die Arbeit ist nun in Scientific Reports veröffentlicht:
Orientation-distribution mapping of polycrystalline materials by Raman microspectroscopy, Norbert Schäfer, Sergiu Levcenco, Daniel Abou-Ras, Thomas Schmid Doi: 10.1038/srep18410
 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.