Optimale Bandlücke für hybride Tandem-Solarzelle aus Silizium und Perowskit

Schema des Aufbaus der Tandem-Zelle.

Schema des Aufbaus der Tandem-Zelle. © H. Cords/HZB

Tandemsolarzellen aus Silizium und Perowskit gelten als Hoffnungsträger für zukünftige hocheffiziente Solarmodule. Ein Team um den Perowskit-Pionier Henry Snaith, Universität Oxford, hat nun mit Bernd Rech und Lars Korte vom Helmholtz-Zentrum Berlin gezeigt, dass Wirkungsgrade von bis zu 30 Prozent für eine Perowskit-Silizium-Tandemzelle erreichbar sind. Sie haben dafür die chemische Zusammensetzung der Perowskit-Schicht systematisch variiert und so eine Bandlücke von 1,75 Elektronenvolt realisiert, die für die Energieumwandlung optimal ist. Ihre Arbeit ist nun in „Science“ publiziert.

Tandem-Solarzellen kombinieren unterschiedliche Solarzellen, um höhere Wirkungsgrade zu erzielen. Dabei ist die Kombination von Perowskit mit Silizium besonders interessant: Denn Perowskit wandelt Licht im sichtbaren Bereich in elektrische Energie um, während Silizium das Licht im nahinfraroten und infraroten Bereich nutzen kann (siehe auch IInfo vom 28. Oktober 2015). In Standard-Perowskit ist allerdings die so genannte Bandlücke mit ca. 1,6 Elektronenvolt noch etwas zu niedrig, um das Sonnenlicht optimal umzuwandeln.

Nun hat eine Kooperation zwischen dem Perowskit-Pionier Prof. Henry Snaith, University of Oxford, und den Silizium-Experten Prof. Bernd Rech und Dr. Lars Korte vom HZB-Institut für Siliziumphotovoltaik gezeigt, dass ein Wirkungsgrad von 30 % realistisch erreichbar scheint: Dafür haben sie gemeinsam eine Silizium-Perowskit-Tandemzelle konzipiert, bei der die beiden Zellen mechanisch aufeinander gestapelt und separat kontaktiert sind.

Das HZB-Team hat die Silizium-Zelle hergestellt, die die untere der beiden Zellen im Tandem bildet. Dem Team in Oxford gelang es, die Bandlücke des Perowskits auf 1,75 eV zu erhöhen, indem sie die chemische Zusammensetzung der Perowskit-Schicht systematisch variierten. Gleichzeitig konnten sie dadurch auch die chemische und thermische Stabilität der empfindlichen Perowskit-Schicht deutlich steigern. 

Science 8 January 2016: Vol. 351 no. 6269 pp. 151-155

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells

DOI:10.1126/science.aad5845

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.