Keywords: energy (303) solar energy (240)

Science Highlight    07.01.2016

Optimum band gap for hybrid silicon/perovskite tandem solar cell

Sketch of the tandem cell.
Copyright: H. Cords/HZB

Tandem solar cells based on silicon and perovskites have raised high hopes for future high efficiency solar modules.  A team led by perovskite solar cell pioneer Henry Snaith at the University of Oxford has now shown, with contributions by Bernd Rech and Lars Korte of the Helmholtz-Zentrum Berlin, that an ultimate efficiency of 30% should be attainable with such tandem cells. They discovered a structurally stable perovskite composition with its band gap tuned to an optimum value of 1.75 eV. The results have been published in "Science".

Tandem solar cells based on silicon and perovskites have raised high hopes for future high efficiency solar modules (see also results here). A tandem solar cell works by absorbing the high energy photons (visible light) in a top cell which generates a high voltage, and the lower energy photons (Infra red) in a rear cell, which generates a lower voltage. This increases the theoretical maximum efficiency by about 50% in comparison to a standalone silicon cell.

To maximise efficiency, the amount of light absorbed in top cell has to precisely match the light absorbed in the rear cell. However, the band gap of ~1.6eV of the standard perovskite material is too small to fully exploit the efficiency potential of this technology.

A team led by perovskite solar cell pioneer Prof. Henry Snaith FRS at the University of Oxford, in collaboration with silicon solar cell experts Prof. Bernd Rech and Dr. Lars Korte of the Helmholtz-Zentrum Berlin, have shown that an ultimate efficiency of 30% should be attainable with such tandem cells.

They conceived together a tandem cell, in a configuration where the perovskite and  the silicon cell are mechanically stacked and contacted separately. The HZB team contributed the silicon cell. The Oxford group did vary systematically the chemical composition of the perovskite layer, and with a precise cocktail of ions discovered a structurally stable perovsksite  with its band gap tuned to an optimum value of 1.75 electron volts, maintaining a high electronic quality of the layer. At the same time, they increased the chemical and thermal stability of the material significantly.

Science 8 January 2016: Vol. 351 no. 6269 pp. 151-155

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells

DOI: 10.1126/science.aad5845


 

arö


           



You might also be interested in
  • <p>Frederike Lehmann earned an award for her presentation at the annual meeting of the German Society for Crystallography.</p>NEWS      11.04.2019

    PhD student of HZB earns Best Presentation Award of the Young Crystallographers

    Frederike Lehmann received a prize for her presentation at the annual conference of the German Society of Crystallography in Leipzig on 28 March 2019. She is doing her doctorate in the Department of Structure and Dynamics of Energy Materials at the HZB under Prof. Dr. Susan Schorr at the Graduate School HyPerCell. [...]


  • <p>The SEM shows Molybdenum sulfide deposited at room temperature.</p>SCIENCE HIGHLIGHT      04.04.2019

    Catalyst research for solar fuels: Amorphous molybdenum sulphide works best

    Efficient and inexpensive catalysts will be required for production of hydrogen from sunlight. Molybdenum sulphides are considered good candidates. A team at HZB has now explained what processes take place in molybdenum sulphides during catalysis and why amorphous molybdenum sulphide works best. The results have been published in the journal ACS Catalysis. [...]


  • <p>Johannes Sutter received an award for his poster on solarcells at the NIPHO19.</p>NEWS      07.03.2019

    Poster award for Johannes Sutter

    Johannes Sutter, PhD student at HZB, was awarded a poster prize at the "International Conference on Perovskite Solar Cells, Photonics and Optoelectronics (NIPHO19)". The conference took place from 25-27 February 2019 in Jerusalem. [...]




Newsletter