Optimale Bandlücke für hybride Tandem-Solarzelle aus Silizium und Perowskit

Schema des Aufbaus der Tandem-Zelle.

Schema des Aufbaus der Tandem-Zelle. © H. Cords/HZB

Tandemsolarzellen aus Silizium und Perowskit gelten als Hoffnungsträger für zukünftige hocheffiziente Solarmodule. Ein Team um den Perowskit-Pionier Henry Snaith, Universität Oxford, hat nun mit Bernd Rech und Lars Korte vom Helmholtz-Zentrum Berlin gezeigt, dass Wirkungsgrade von bis zu 30 Prozent für eine Perowskit-Silizium-Tandemzelle erreichbar sind. Sie haben dafür die chemische Zusammensetzung der Perowskit-Schicht systematisch variiert und so eine Bandlücke von 1,75 Elektronenvolt realisiert, die für die Energieumwandlung optimal ist. Ihre Arbeit ist nun in „Science“ publiziert.

Tandem-Solarzellen kombinieren unterschiedliche Solarzellen, um höhere Wirkungsgrade zu erzielen. Dabei ist die Kombination von Perowskit mit Silizium besonders interessant: Denn Perowskit wandelt Licht im sichtbaren Bereich in elektrische Energie um, während Silizium das Licht im nahinfraroten und infraroten Bereich nutzen kann (siehe auch IInfo vom 28. Oktober 2015). In Standard-Perowskit ist allerdings die so genannte Bandlücke mit ca. 1,6 Elektronenvolt noch etwas zu niedrig, um das Sonnenlicht optimal umzuwandeln.

Nun hat eine Kooperation zwischen dem Perowskit-Pionier Prof. Henry Snaith, University of Oxford, und den Silizium-Experten Prof. Bernd Rech und Dr. Lars Korte vom HZB-Institut für Siliziumphotovoltaik gezeigt, dass ein Wirkungsgrad von 30 % realistisch erreichbar scheint: Dafür haben sie gemeinsam eine Silizium-Perowskit-Tandemzelle konzipiert, bei der die beiden Zellen mechanisch aufeinander gestapelt und separat kontaktiert sind.

Das HZB-Team hat die Silizium-Zelle hergestellt, die die untere der beiden Zellen im Tandem bildet. Dem Team in Oxford gelang es, die Bandlücke des Perowskits auf 1,75 eV zu erhöhen, indem sie die chemische Zusammensetzung der Perowskit-Schicht systematisch variierten. Gleichzeitig konnten sie dadurch auch die chemische und thermische Stabilität der empfindlichen Perowskit-Schicht deutlich steigern. 

Science 8 January 2016: Vol. 351 no. 6269 pp. 151-155

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells

DOI:10.1126/science.aad5845

arö

Das könnte Sie auch interessieren

  • Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Science Highlight
    30.11.2022
    Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Bislang war es äußerst langwierig, Messungen mit hoher Empfindlichkeit und hoher Ortsauflösung mittels Röntgenlicht im „tender“ Energiebereich von 1,5 - 5,0 keV durchzuführen. Dabei eignet sich genau dieses Röntgenlicht ideal, um Energiematerialien für Batterien oder Katalysatoren, aber auch biologische Systeme zu untersuchen. Dieses Problem hat nun ein Team aus dem HZB gelöst: Die neu entwickelten Monochromatoroptiken erhöhen den Photonenfluss im „tender“ Energiebereich um den Faktor 100 und ermöglichen so hochpräzise Messungen nanostrukturierter Systeme. An katalytisch aktiven Nanopartikeln und Mikrochips wurde die Methode erstmals erfolgreich getestet.
  • Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Science Highlight
    30.11.2022
    Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Nanodiamant-Materialien besitzen Potenzial als preisgünstige Photokatalysatoren. Doch bisher benötigten solche Kohlenstoff-Nanopartikel energiereiches UV-Licht, um aktiv zu werden. Das DIACAT-Konsortium hat daher Variationen von Nanodiamant-Materialien hergestellt und analysiert. Die Arbeit zeigt: Wenn die Oberfläche der Nanopartikel mit ausreichend Wasserstoff-Atomen besetzt ist, reicht auch die schwächere Energie von Licht im sichtbaren Bereich für die Anregung aus. Photokatalysatoren auf Basis von Nanodiamanten könnten in Zukunft mit Sonnenlicht CO2 oder N2 in Kohlenwasserstoffe oder Ammoniak umwandeln.
  • Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien
    Science Highlight
    28.11.2022
    Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien
    Feststoffbatterien ermöglichen noch höhere Energiedichten als Lithium-Ionenbatterien bei hoher Sicherheit. Einem Team um Prof. Philipp Adelhelm und Dr. Ingo Manke ist es gelungen, eine Feststoffbatterie während des Ladens und Entladens zu beobachten und hochaufgelöste 3D-Bilder zu erstellen. Dabei zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt.