A Fast Way of Electron Orbit Simulation in Complex Magnetic Fields

Vertical cut through a quadrupole magnet: Black: Field distribution at a fixed vertical distance to the midplane. Magenta: Electron trajectories for various initial coordinates.

Vertical cut through a quadrupole magnet: Black: Field distribution at a fixed vertical distance to the midplane. Magenta: Electron trajectories for various initial coordinates. © C. Rethfeldt/HZB

The design  of  advanced synchrotron radiation sources requires precise  algorithms  for the  simulation of electron trajectories in  complex magnetic fields. However, multi-parameter studies can  be very time consuming. Now, a team of the HZB has developed a new algorithm which significantly reduces the computation time.  This approach is now published in the renowned journal “Physical Review Special Topics Accelerator & Beams”.

In a storage ring like BESSY II electrons circulate nearly with the speed of light passing complex magnetic structures. These magnets guide the electron beam and focus it on the ideal orbit. They are comparable to optical lenses which focus the light. To evaluate the stability of the electron trajectories in the magnetic fields, several thousands of turns need to be simulated.  After each revolution the trajectories are slightly different, passing the magnets at slightly different positions. These combined and complex orbit and field calculations require a precise algorithm which could easily result in time consuming simulations.

Already in 2011, a team out of the HZB undulator group and of the HZB-institute of accelerator physics has published  a first paper of a new simulation algorithm [2], which drastically speeds up the simulation time for trajectories in complex undulator fields. This simulation routine was implemented into the public domain code “elegant“ of the Advanced Photon source / Argonne, and it is available, worldwide.

Now, Malte Titze together with Johannes Bahrdt and Godehard Wüstefeld could extend this method to another important class of  three dimensional magnets: multipoles such as  quadrupoles or sextupoles  [1].

“The paper demonstrates, that this method yields very precise results, particularly within the fast changing fringing fields of the magnets”, Malte Titze explains. He is now engaged in research activities at CERN. “Such simulation methods are of great  interest for future light sources, especially for diffraction limited storage rings, which may include combined function magnets and exhibit significant cross talking between neighboring magnets” comments Johannes Bahrdt. “This is of clear relevance for a successor of BESSY II”. The scientists describe their methods in the renowned journal of “Physical Review Special Topics Accelerator & Beams“.


[1] M. Titze, J. Bahrdt, G. Wüstefeld, „Symplectic tracking through straight three dimensional fields by a method of generating functions“

DOI: 10.1103/PhysRevAccelBeams.19.014001

[2] J. Bahrdt, G. Wüstefeld, “Symplectic tracking and compensation of dynamic field integrals in complex undulator structures”, Phys. Rev. ST Accel. Beams 14, 040703 (2011).

arö

  • Copy link

You might also be interested in

  • Lithium-sulphur pouch cells investigated at BESSY II
    Science Highlight
    08.01.2025
    Lithium-sulphur pouch cells investigated at BESSY II
    A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.
  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
  • Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    News
    13.12.2024
    Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    This year, the Friends of Helmholtz-Zentrum Berlin (Freundeskreis des HZB e. V.) awarded the Ernst Eckhard Koch Prize to Dr. Dieter Skroblin of the Technische Universität Berlin for his outstanding doctoral thesis. The European Innovation Award Synchrotron Radiation went to Dr. Manfred Faubel from the Max Planck Institute for Dynamics and Self-Organization in Göttingen and Dr. Bernd Winter from the Fritz Haber Institute in Berlin. The award ceremony took place at this year's HZB user meeting.