Die Vermessung der Chemie: Lokaler Fingerabdruck von Wasserstoffbrücken-Bindungen experimentell erfasst

Das Team konnte erstmals mit der Methode der inelastischen R&ouml;ntgenstreuung beobachten, wie der Aufbau von Wasserstoffbr&uuml;cken die C=O Bindung im Azeton-Molek&uuml;l ver&auml;ndert.</p> <p>

Das Team konnte erstmals mit der Methode der inelastischen Röntgenstreuung beobachten, wie der Aufbau von Wasserstoffbrücken die C=O Bindung im Azeton-Molekül verändert.

© arö/HZB

Ein Team aus dem Helmholtz-Zentrum Berlin konnte nun erstmals messen, wie neue Verbindungen zwischen Molekülen diese beeinflussen: Sie haben aus Messdaten an der Swiss Lightsource des Paul-Scherrer-Instituts die „Energielandschaft“ von Azeton-Molekülen rekonstruiert und so experimentell den Aufbau von Wasserstoffbrücken zwischen Azeton- und Chloroform-Molekülen nachgewiesen. Die Ergebnisse sind in Nature Scientific Reports veröffentlicht  und helfen, grundlegende Phänomene der Chemie zu verstehen.

Moleküle setzen sich aus Atomen zusammen, die zueinander bestimmte Abstände und Winkel einnehmen. Die Gestalt eines Moleküls kann sich verändern, zum Beispiel durch die Nachbarschaft zu anderen Molekülen, durch äußere Kräfte und Anregungen oder auch wenn ein Molekül eine chemische Verbindung mit einem anderen Molekül eingeht. Ein nützliches Konzept, um die möglichen Änderungen in Molekülen zu beschreiben, sind sogenannte Potenzialflächen oder Energielandschaften: Dies sind jedoch keine Flächen im realen Raum! Vielmehr betrachtet man Parameter, die das Molekül definieren, und stellt diese als Fläche dar, beispielsweise die Ausdehnung einer Kohlenstoff-Sauerstoff-Verbindung oder die Winkel zwischen verschiedenen Molekülgruppen. Solche Flächen kann man sich als hügelige Landschaften vorstellen: Wenn Licht einen Teil des Moleküls zu Schwingungen anregt, wandert der Zustand des Moleküls energetisch aufwärts, vielleicht sogar über einen Pass oder Gipfel hinweg. Schließlich kommt das Molekül wieder in das vorherige Energieminimum zurück oder landet in einer anderen Energiemulde, die veränderten Winkeln oder Verbindungslängen entspricht. Manche dieser Veränderungen lassen auf Wasserstoffbrückenbindungen mit benachbarten Molekülen schließen.

Gezielt C=O-Bindung zu Schwingung angeregt und Antwort gemessen

Das Team um Annette Pietzsch und Alexander Föhlisch hat es nun erstmals geschafft, diese sehr subtilen Potenzialflächen rund um das kleine Molekül Azeton (C3H6O) genau auszumessen. Sie nutzten dafür die Methode der inelastischen Röntgenstreuung (RIXS) an der Swiss Light Source des Paul Scherrer-Instituts (PSI) in der Schweiz. „Wir haben gezielt die Doppelbindung zwischen dem Kohlenstoff- und Sauerstoff-Atom in Azeton zu Schwingungen angeregt und die Antworten darauf genau analysiert“, erklärt Annette Pietzsch. Durch die extrem hohe Auflösung der Messdaten gelang es ihnen, die Potenzialfläche entlang dieser C=O-Doppelbindung zu kartieren.

Wasserstoffbrücken hinterlassen Fingerabdruck

Im zweiten Teil des Experiments untersuchten sie eine Mischung aus Azeton und Chloroform; diese flüssige Mischung wird als azeotrop bezeichnet, das heißt, durch Destillation lassen sich die beiden Zutaten nicht mehr voneinander trennen. Nun konnten die Wissenschaftler erstmals experimentell beobachten, wie sich die Azeton-Moleküle über Wasserstoffbrücken dicht mit den Chloroform-Molekülen vernetzen: Aus den Messdaten konnten sie auf den Fingerabdruck von Wasserstoffbrückenbindungen schließen, die sich zwischen der C=O-Gruppe der Azeton-Moleküle und den Wasserstoff-Gruppen der Chloroform-Moleküle bilden.

Nützliches Werkzeug entwickelt

„Die Ergebnisse ermöglichen erstmals die quantitative Vermessung von multidimensionalen Potenzialflächen von Molekülen. Solche komplexen Potenzialflächen sind per se ein spannendes Untersuchungsobjekt, denn sie beschreiben auch, wie sich zum Beispiel biologisch aktive Moleküle in ihrer Umgebung verhalten. Wir haben nun ein Werkzeug entwickelt, um solche Potenzialflächen experimentell zu kartieren“, schreibt das Team in seinem Beitrag, der im renommierten Nature Scientific Reports erschienen ist.

Annette Pietzsch arbeitet an der Berliner Synchrotronquelle BESSY II am Aufbau von METRIXS, einem Instrument für die Resonante Inelastische Röntgenstreuung, das in Zukunft noch deutlich bessere Auflösungen erreichen kann. Weiterhin wird das Experiment meV-RIXS hochaufgelöste Röntgenstreuung im Niederenergiebereich möglich machen. Alexander Föhlisch leitet das HZB-Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung und ist Sprecher des Helmholtz Virtual Institute 419 (Dynamic pathways in multidimensional landscapes).

Nature Scientific Reports | 6:20054 | DOI: 10.1038/srep20054
Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering, Simon Schreck, Annette Pietzsch, Brian Kennedy, Conny Såthe, Piter S. Miedema, Simone Techert, Vladimir N. Strocov, Thorsten Schmitt, Franz Hennies, Jan-Erik Rubensson & Alexander Föhlisch.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.